Design for Off: Key Mechanical Design Features for Significant Energy Savings

Jonathan Heller July 29, 2014

Presentation Objectives

 Convince you that HVAC System Design is the key to High Performance Building Design

 Identify the key Mechanical Design features needed to deliver high performance buildings.

30 years of Energy Code Progress

2 W/SF

30 years of Energy Code Progress

Office Building EUI

Office Building EUI

Office Building EUI

How Far Have We Really Come?

Current EUI = 30 kBtu / ft²-yr

1. Move away from large central HVAC systems

Towards smaller zonal systems

2. Move away from All-In-One HVAC systems

Towards dedicated ventilation systems

3. Right-Size Mechanical Systems

Believe (Do) the Load Calculations

Ecotope Case Studies

Rice Fergus Miller Office: Bremerton, WA

Now What?

Load Reduction Measures

- **1.** Insulation
- 2. Daylighting
- 3. VRF Heat Pumps
- 4. Heat recovery ventilation

5. DESIGN FOR OFF

NO Heat/Cool for 70% of the year!

End Use Reductions

Fan Energy Load Reduction: Ceiling Fans vs. Ducts to Move Air

Construction Costs breakdown (\$/sf)

King County Housing Authority: Tukwila, WA

1980's Level Envelope

- R-11 Walls
- R-20 Roof

- Uninsulated Slab
- U-0.4 Double Glaze

No Economizers

No Direct Digital Controls

High Efficiency Lights & Plugs

VRF with Heat Recovery

• 48 Tons

- 3 Outdoor Units
- 36 Ductless Units
- 14 Ducted Units
- 50 Zones Total
- 1.33 Ratio Indoor/Outdoor Units

DOAS via High Efficiency ERV

The Biggest Bang for the Buck

Why HVAC Matters

■ Lights, Plugs, Misc. ■ HVAC

Fan Coil Energy Use

(Fan Watts for delivery of 8000 Btuh cooling)

Fire Station 72. Issaquah, WA

EUI of Regional Fire Stations

Right-Sized Geothermal for Space Heating, Cooling, and DHW

- Only 8 geo bores easily fit in parking lot.
- Three identical 5-ton heat pumps
- 1 ton per <u>1,140 sf</u> for Heating and Cooling
- Zoned Radiant Slabs
- 4-pipe fancoils in sleeping rooms
- DOAS w/ Heat Recovery Ventilation

EUI of Seattle Fire Stations

Why are New Stations so Inefficient?

- Continuous ducted central fan systems
- Ventilation at 3x ASHRAE 62
- No heat recovery, electric heat on ventilation air
- Over lit with no occupancy sensors on the lights

Design for Off

1. Dedicated Outdoor Air System with Energy Recovery or Demand Controlled Ventilation

Design for Off

1. Dedicated Outdoor Air System with Energy Recovery or Demand Controlled Ventilation

DOAS w/ ERV or DCV

Design for Off

- 1. Dedicated Outdoor Air System with Energy Recovery or Demand Controlled Ventilation
- 2. Zoned Heating and Cooling Equipment Cycling on Load.
- 3. Limit Ventilation Volumes and HVAC Equipment Sizing to 130% of ASHRAE Standards and Load Calculations

Questions?

jheller@ecotope.com