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ESTIMATING PEAK REDUCTION FROM SUBMETERED DATA 

John Proctor 
Proctor Engineering Group 
Corte Madera, California 

Introduction 

In 1991, Pacific Gas and Electric Company (PG&E) 
ran a pre-production test of fhe Appliance Doctor Project 
in Fresno, California. This test consisted of quality-as­
sured distribution-duct sealing of residential centraJ air 
conditioning systems (and repairs to a few units). This 
project was detailed in Reference 2 and showed a cooling 
savings of 21.6% for high-use customers and 9.2% for 
random customers (Ref. 6). The test included pre-treat­
mem/post-treatment 5ubmetering of the air conditioners 
(ACs). Units were submetered from JWle 7 lhrough July 
10 (pre-treatment); Appliance Doctor repairs were made 
(treaunent); and submelering continued from August 21 
through September 2S (post-treatment). With Ibis subme­
(ered data, the peak reduction due to these repairs was 
estimated. 

The Problem 

Valid estimation of electrical use of a residentiaJ AC 
on a peak day is intrinsically difficult. The evaluar.or is 
attempting to estimate an event that happens rarely (only 
once every 20 years, by some defmitioos). The event of 
interest is often outside the data set available and, when 
evaluating the effect of some treatment. the event may 
occur in neither the pre-treatment nor the post-treatment 
data set. The estimation ofpeakreduction, therefore, often 
depends 00 extrapOlation beyond the values in the data 
set. When the event of interest occurs near the "edge" of 
the data, the "prediction interval" is wider than when it 
occurs near the mean of the data. As an evaluator extrapo­
lates beyond the existing data, the convenient assump­
tions that were made in !he mathematical model are likely 
to be less and less justified. 

Peak electrical use is often driven by multiple vari­
ables. For residential ACs, for example, customer opera­
tion, outside temperature, relative humidity, time of day, 
day of week, solar incidence, sky cover, and prior tem­
peratures are some of the variables that may affect the 
peak use. Utility planning requires an accurate estimate of 
peale 

Proctor Engineering Group investigated the assump­
tions and results of six analytical models applied to the 
Appliance Doctor data set day-matching. a constrained 
regression model. a temperature-bin statistical model, 
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houest-days statistical aggregation, an hourly curve-fit­
ting model, and a Simplified regression model. This paper 
discusses the strenglhs and weaknesses of lhe models in 
estimating peak reduction from submet.er data. 

Oata Set Description 

For each AC. submetered data were recorded at 15 
minute intervals. The data consisted of kWh readings for 
60 residential ACs in three groups: 10 bigh-usecustomers 
that received Appliance Doctor (treated high-use); 13 
random customers that received Appliance Doctor (treated 
random); and 37 random AC customers enroUed in PG&E's 
Awliance Metering Projea in Fresno (comparison). 

For the comparison of these models, only data from 
weekdays with maximum temperatures above 99°F were 
used. This consisted of five days in the pre-treatment 
timeframe and six days in the post-timeframe. Hours 15 
(from 2 p.m. to 3 p.m.) and 19 (6 p.m. to 7 p.m.) were 
utilized because they represent system-peak and local 
residential distribution peak, respectively. 

Characteristics of Residential AC Use 

Residential AC usage varies for individual houses. 
Fixed thennostat seuings are the exception rather than the 
rule (see Occupant Thennostal Control) . Pooling aU the 
homes in the group reduces the variation caused by occu­
pant behavior. The pooled variable is the load that the 
utility sees from that group at each time interval. Both 
pooled and individual data sets were used in the analysis. 

Residential AC use not only fluctuates for each cus­
tomer, it also fl uctuates with the time of day, independent 
of temperature. In this investigation, both temperature­
pooled and bour-of-day data sets were used, leading to the 
conclusion that hour-or-day sensitive analysis provides a 
more valid estimate of peak use. 

Genoral Assumptions and Validity 

The validity of each model is dependent on the accu­
racy or the following assumptions: 

1. The experimental group is an unbiased sample of the 
population of interest. 

2. The only significant difference between lhecomparison 
group and the experimental group is the treatment 
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A canparison group as closely mau::bed as possible sbooJd be 
employed in the analysis. This is panirularly true because of 
!he multiple faro:n influencing residential AC use. 

ConvenUons In this Paper 

A confidence interval states the expected range of the 
mean. For peak prediction. the interval of interest is the 
expected range of the extreme case. In estimating the 
change in peak, we wish to determine the "confidence 
interval" of the difference between the pre- and post-treat­
ment extremes. In this paper, the listed confidence interval 
is the standard expected range of the mean difference. 

The load is listed as the "fraction of maximum con­
nected load." Hourly averagekW has been divided by the 
maximum hourly average kW recorded by the submeter 
on that unit. This procedure produces nonnalized results. 

The change in load between pre- (0 post-treatment is 
listed as a "plus" if the load increased and a "minus" if the 
load decreased. 

Model #1: Day-Matching 

Description 

Day-matching is dermed as comparing data from 
pre-treatment days and post-treatment days that exhibited 
a high degree of similarity. Similarity isjudged by: Week­
day versus WcekendlHoliday, Maximum Ambient Tem­
peralW'C, Average Temperature, and Daily Temperature 
profile. The two closest matched pre/post days in the data 
set are pre-treatment (Monday, June 10. 1991) and post­
treatmenl (fuesday, September 3, 1991). The peak tem­
perature on both days was 1030f'. 

Details 

For these two matched days, use is pooled for each 
group by hour. The result is an AC load profile for each 
group. The pre-treatment load profiles for the high-user 
and random groups are shown in Figure I. 

The process is replicated for the post-treatment pe­
riod. and the change in electrical load due to the treatment 
is estimated as: 

aLIA = ( LI Apnn - LIAprd - (L3Apos1: - L1Apre) 

where: 

aLIA = average net change in load for group 1 in 
hour A 

LIApost :;: average load for group I in hour A on post­
treatment day 

LIA~ = average load for group I in hour A on pre­
trcatmentday 

L3Apost = average load for group 3 (comparison group) 
in bour A on post-treaonent day 
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Figure 1. Load Profile on Pre-treatment 
Day 

L3A~ = average load for group 3 (comparison group) 
in bour A on pre-treatment day 

Validity and Assumptions 

The validity of this estimation model is dependent on 
bow representative the matched days are of the peak day. 
In the end, the conclusions will be based on an assumption 
about the use at peale.. These might be that the use at peak is: 

1. The same as the use on the matched days . 

2. Proportional to the use on the matched days [such as 
Peak Electrical Load = (1+x) . (Matched Day Load)]. 

3. Some other relationship to the matched days (such as 
the change in load at peak is equal to the change in 
load between the matched days). 

Asswnption #1 is unlikely to be valid because there are 
ample data to sbow that demand increases as the ambient 
temperature rises (unless the matched days have the same 
peak temperature as is predicted for the peak day). As­
sumptions tI2 and #3 require some additional information 
to establish the relationship. Such an analysis is likely to 
develop inlO one of the other models. 

Results 

The resul ts of this analysis method for this study is 
shown in Figure 2 and compared lO ol.her models in Table 
1. This analysis shows an estimated post-repair increase 
in load in bour 15. It also sbows a load reduction in bour 
19 for both high-use and random treaIed homes. 
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Figure 2. Load Reduction on 103DF Day 
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Figure 3. Modol2 

The assumption that the peak use is the same as 
matched day use is violated by data recorded on July 3, 
1991. The peak temperature on that day was 109"F and 
the use was 18% to 28% (of uurumum connected load) 
higher than that recorded on the matched days. When 
other day matches are used (including days matched by 
comparison group usage data), the results are variable. 
Consequently, there is low confidence in the results of this 
analysis. Models #4, #5, and #6 are essentially extensions 
of Model #1 that attempt to improve and detennine the 
prediction interval of the estimate. 
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Table 1. Change in Peak (Fraction of 
Maximum Connected Load) 

Modell Model 4 Model 5 Model 6 
High Use Hr 19 -0.129 -0213 ·{J.OO7 -0.233 

95% interval ".; ±.133 NC ±.11 4 

Random Hr 19 .o223 -0.125 .o.086 0.059 

95% interval ".; i.1St NC ±orn 

High Use Hr 15 0.115 .o.080 0.084 0.120 

95% interval ".; i.1S1 NC ±180 

Random Hr 15 0.066 .o.050 0.014 0.093 

95% interval f,C ±.131 NC ±.183 

NC. Not calculated 

Model #2: Unear Regression 

Description 

The linear regression model assumes that peak use 
can be modelled as though eacb AC is in one of three 
modes (off, cycling, or running continuously), and lIlat 
prior ambient temperature is the predominant determinant 
of mode and WattdIaw. This model most closely matches 
an AC controlled by a constant thennostat setting. There 
is no distinction between different hours of the day, and 
individual units are not pooled together. 

In estimating the peak use of residential ACs, there 
are physical conslraints that set the upper boundary of 
electrical use. 1be maximum power draw from an indi­
vidual unit is limited by the design and condition of the 
machine. The maximum draw for anyone AC is deter­
mined primarily by outside temperature, inside tempera­
ture, and humidity. The upper limit constraint is utilized 
in this model. 

Details 

A number of useful features are provided by this 
model . First, it wiU notoverpredict the usc or ACs that are 
running continuously. Second. it easily explains different 
modes of operation and their effects on peak . 

The design of the simplified model is detailed in Refs. 
5 and 6. For each bouse. a linear regression correlating 
maximum AC input to hourly outdoor temperature dam is 
calculated. This is the continuous operation line in Figure 
3. Similarly, another regression line describing AC use 
when the unit is cycling is computed (the cycling line). 
The intersection of these two lines is the onset of continu­
ous operation ({)cO) and indicates the temperature above 
which the AC (if runnin~) is modeled to run continuouslr. 
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The model is calculated for each house in both pre­
and post-treaunent periods, and the change in load due to 
the treaunent is estimated as: 

OLn(l03) = Ln(103)post - Ln(103)~ 

where: 

Ok(103) = raw cbange in load for bouse n at 103°F 
ambient 

Ln(103)pre = load for bouse n at 103'1< ambient before 
U"eatment 

if ambient temperature (103) > OCOnpre, 

= OoolO3pre * (Cncontpre + Sllcontpre * 103); 
if ambient temperature (103) < OCOnpre, 

= OoolO3pre * (Cncycpe + SncYqJre *103) 

OCOnpre = onset of continuous operation for house n 
before treatment 

Don 103pre = probability that unit in house n before treat­
ment will be on at lO3"F 

Cocontpre = intercept of the continuous operation line 
for house n before treabnent 

SDCOlltpre = slope of the continuous operation line for 
house n before treatment 

Cncycpre = intercept of the cycling operation line for 
house n before treabnent 

sncycpr = slope of the cycling operation line for house 
n before treattnent 

and, 

Ln(103)po&t = load for bouse n at 103"F ambient after treat­
ment (calculated in the same manner as 
Ln(103nre) 

The average net cbange in load due to the treatment is 
estimated as: 

&1(103) = average (OLl(103) -Average (OL3(103) 

wbere, 

&1(103) = average net change in load for 
group 1 at 103"F ambient 

Avg (DLI(103) = average raw change in load for 
group I at 103°F ambient 

A vg (DL3(103) ) = average raw change in load for 
group 3 (comparisoo) at 103"Fambient 

Validity and Assumptions 

The validity of this method in estimating the peak 
reduction is dependent on how well the model matches 
the peak-use patterns of eacb individual AC. The follow­
ing assumptions are made: 

I . The probability that the unit will be running increases 
linearly atbigher temperatures (and cannot exceed I ). 

2. Any differences in elecuical load that are caused by 
variables other than outside temperature are can­
celled by the use of the comparison group. 

3. The cycling regression and probability of the unit 
running capture thennostat adjusunents at bigh tem­
peratW'e. 

The accuracy of Assumption #1 can easily be tested 
at high temperatures below the peak temperature. If it 
proves to be inaccurate at those temperatures an alternate 

assumption can be substituted. Occupant attitudina1 vari­
ables may prove helpfu1 in modelling occupant control 
behavior at high temperatures. While Assumption #2 may 
be accurate, the inclusion of all hours of the day in the 
same analysis increases the variability. This can be im­
proved by separate analysis of each hour of the day. 
Assumption #3 is problematic. As discussed below, a 
constant thermostat setting is not the predominant control 
pattern. However. the model does not assume that a con­
stant thermostat setting exists; it only models the cycling 
use as a linear function. Start -up and shut -down cycles can 
be detcnnined from submeter data. With these data, the 
effects of these types of cycle can be cstimated. 

A constant thennostat setpoint was evident in only 
26% of the bouses in this sample (Ref. 6) Other investi­
gators have shown similar thermostat control patterns in 
room ACs (Refs. 3 and 4). Lutzenhiser(Ref. 4) found only 
29% of the window ACs in his study were controlled by 
a constant thennostat setting. An investigation in Califor­
nia by Berkeley Solar Group (Ref. I) yielded similar 
results- 33% of the occupants using central ACs re­
poned constant setpoint. 

Resutts 

This is a very useful model in explaining the modes 
of central AC use. One of its analytical strengths is that it 
provides justification for extrapolation to temperatures 
batter than those observed. The strength of this model is 
lost when all hours are pooled. In that fonn, the results are 
not usable due to large standard errOl'S and low K. This 
model should be further developed in an hour-by-hoW' 
analysis. 

Model #3: Temperature Bin 

Description 

The third model eliminates assumption of linearity 
from Model #2. For each AC, this model combines aJl the 
load data for temperature bins 5°F wide. This model 
makes no distinction between different bours of the day 
and does not pool the individual units. 
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Ootalls 

For each house, all the data were binned by ambient 
lemperature. Eacb bin contained data from all bours in 

whicb the ambient temperature was within 2°P. For ex­
ample, the 95"F bin contained all data for hours wben the 
temperature was between 930f' and 97°F. A mean and 

95% confidence interval was then calculated for each bin 

and plotted, as sbown in Figure 4. 

This method showed wide confidence intervals at 

high temperatures. These oonfidence intervals were fur­
therwideoed by the inclusion of data from differing bOtm 
of the day. Since AC use is so dependent on customer 

control behavior, use at 1()()"F at 3 p.m. can be substan­
tiallydifferent from use at 10000Fat 7 p.m. Because of this 

time-<lf-day dependence, many oftbe graphs showed little 
change with outside temperature (see Figure 4), 

Validity and Assumptions 

ExtrapOlation to peak temperature is difflCUlt with 

lhis model. Each individual AC/bomeJoccupant combina­
lion has its own characteristic signature. which is nOl 

easily standardized by this method. This model a1so de­

pends on the assumption that the use of a comparison 
group will cancel effects otha than temperature. The 

inclusion of all hours of the day in the analysis increases 
the variability. 

Resutts 

This model drove borne the point thai. each bour of 
the day must be ana1yzed individually. 

3500 . 

3000 

2500 

Model II 4: Hottest-Days Aggregation 

Description 

In the "bottest-days statistical aggregation." load data 
for each boor from the bonest days are aggregated in a 
single bin. This is an bour-differentiated, pooled higb­
tempernture, single-bin v",ion of Model #3. It is also a 
robust version of Model #1. 

Ootalls 

For each group. the load was pooled for each bour of 
the bottest weekdays (lOO"F or above). The treatment 
group data were paired with the comparison group data 
for the same day and the difference (DA) was computed. 
The change in electrical load due to the treatment is 
estimated as the difference between the mean DA~ and 
the mean DApoIl. 

Validity and Assumptions 

This model attains its maximum validity wben each 
hom of the day is utilized in its own anaJysis and when 
the temperatures in the pre. and post-periods are similar 
to each other. Nevertheless.. there is no structuraJ reason 
to assume that the difference between the means is con· 
stant at higher temperatures. 

Results 

This anaJysis is theooly ODe that prediClS peak reduc­
tions for both groups for both time periods (see Table 1). 
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Figure 4. Post·Treatment Bin Analysls-Houae12 
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92.119Model #5: Hourly Curve-Fitting 

Description 

This model consists of a piece-wise linear regression 
for every hour of the day and pools the individual ACs 
into groups. In this I!'odel, two variables (the percent of 
the units on during the hour and the duty cycle oftbe units 
on during the bour) and lheir product (coincidence) are 
assessed. These variables are regressed against the maxi­
mum ambient temperature for the day. Separate regres­
sion coefficients are calculated for higher temperatures 
(100°F to 115°F) and lower temperatures (8S0P to 99"F). 
Since the temperatures of imerest are the higher ones, only 
the results at those temperalW"es are discussed here. 

Details 

The fIrst step in this analysis is to separate coinci­
dence (also called diversity) into two oomponems. The 
ftrst component (%on) is simply the Dumber of wtits on 
at any time in the bour divided by the number of units in 
the group. For example, ifS out of 10 units ran during an 
hour, the %on would be 80%. This component captures 
information on ACs that are switched off at high tempera­
tures. Using only ACs that were on sometime during the 
hour, the second component (Yon), average duty cycle as 
a percent of the hour is calculated. For example, if all the 
units that were on at any time during the hour were 
running continuously, the Yon would equal 100%. The 
relationship between these variables and the diversified 
load in that hour is: 

LIA = load for group I in bour A 

= average(CLIA) - %ooiA - YonlA 

where, 

eLlA = average connected load for group 1 in hour. 

The change in electrical load due to the treabnent is 

estimated as: 

Mo.1 = (LIApnst - L1Apre) - (L3Apost - L3Apre) 

where each of the loads is calculated from the high tem­
perature regression, such as: 

LIAprc = hAjre+ SIAprc - Tp 

where, 

ltAprc = high temperature pre-treatment regression 
intercept for group 1 in hour 

SlApre = high temperature pre-treatment regression 
slope for group 1 in hour A 

Tp = maximum temperature for the peak day 
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Validity and Assumptions 

This model is a pooled hourly, hot days regression 
model. It is a further development of Model #4, in that a 
regression against peak temperature is applied to the high 
temperature bin. The validity of this model is dependent 
on two assumptions: 

1. The percentage of units that will be running increases 
linearly athigher temperatures (and cannot exceed 1). 

2. The average duty cycle of the ACs in the group 
increases linearly with outside temperature. 

This model auempts to overcome the shortcomings 
of Model #4 by determining the slope of the data in the 
high temperature bin. The accuracy of this method de­
pends on the temperature range of the available data. A 
wide range of data and the presence of temperatures near 
the peak temperature will improve the validity of this 
estimate substantially. 

Results 

The results of this model for 103°P are displayed in 
Table 1. This model and the day-matching model both 
produced changes in peak that were of the same sign for 
both the high-use and random groups-peak reduction in 
hour 19 and peak increase in hour 15. 

Model #6: Simplified Multivariate 
Unear Regression 

Description 

This model deals with every hour of the day. It pools 
the individual ACs into groups., pairs treatment, and com­
parison group averages by day, and utilizes the post period 
as a "dummy" variable in the regression. 

Details 

This model takes the general form: 

DA = C + (a x POSl) + (b x P.TEMI) 

where, 

DA = difference in pooled load between paired 
by date) treatment and comparison groups 
in hour A 

POST = dummy variable (OIl) for post time period 

P.1EMP = maximum temperature for the paired day 

The regression coefficient a estimates the change in elec­
tricalload due to the u-eabnent. 

Validity and Assumptions 

The validity of this model is dependent on two as­
sumptions: 
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92.119I. The cbange in peak (captured in tbecoefficient a) is 
a constant value (independent of the peak temperature). 

2. The underlying suucture of the data is linear and the 
important variables randomly vary in both the com­
parison group and the treatment group. 

Sample size and comparison group selection are critical 
to the validity of this model. In order to obtain linearity in 

the data, two days bad to be excluded from the analysis. 
July 5 (the day after the boliday) and June 11 werebigbly 
significant outliers. June II appeared to be an outlier due 
to the small sample size (two ACs that normally operated 
during the bours of analysis were off on that day). 

Results 

The estimates obtained with this model are displayed 
in Table 1. For hour 19, the range of temperatures in the 
high temperature data set, the load difference (DA) was 
independent of the peak temperature. For hour 15, the 
peak temperature ex.hibited a moderate influence on DA . 

Summary, Conclusions, and 
Recommendations 

Table 1 summarizes the estimated change in peak 
load in bour 13 (near system peak) and bour 19 (near lhe 
residential local area distribution peak). Based on the 
consistent results across models, it can be concluded that 
high-use customers in lhis locale will exhibit a lower load 
on the distribution system in the early evening when their 
ducts are sealed. We reserve judgment on the efficacy of 
reducing early afternoon peak from a duct-scaling pro­
gram. 

Accurate estimation of peak reduction from subme­
tered data is difficult for small samples. Accurateestima­
tion requires significant advanced planning. We strongly 
recommend that peak reduction on residential ACs not be 
inferred from measured kWh savings. For future evalu­
ations and verifications, we recommend: 

• Select a strong comparison group. The validity of all 
the models is highly dependent on a comparison 
group that does not differ significantly from the treat­
ment group. It is not out of the question to utilize a 
flipJflop method for many treatments. Even duct leak­
age could be automatically changed on a fixed sched­
ule with motor-operated dampers. 
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• Cominue development of Model #2. This model is the 
only one with a pbysical justification for extrapola­
tion to higher temperatures. It should be modified to 
an hour-by-hour analysis, the statistical package de­
veloped, and the results tested. 

• Analyze Iwur-by-hour. Because of the large time-of­
day effect on residential AC use, utilize an hour-by­
hour analysis. 

• Increase sample size and sampling period. Future 
~ples sbould include at least 20 units, and the pre­
and post-treatment periods should each be extended 
over an entire cooling season. 

• Explore weigh/ed analysis. Larger data sets offer the 
opportunity to use data that are weighted more heav­
ily closer to the anticipated peak temperature. 
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