Central Valley Research Homes

Variable Compressor Speed Heat Pumps

ET Project Number: ET14PGE8761

Project Managers: Marshall Hunt, Codes & Standards Jeff Beresini, Emerging Technologies Pacific Gas and Electric Company

Prepared by: Bruce Wilcox, P.E.

Abram Conant Proctor Engineering

Rick Chitwood Chitwood Energy Management

Issued: September 13, 2016

© Copyright, 2016, Pacific Gas and Electric Company. All rights reserved.

ACKNOWLEDGEMENTS

Pacific Gas and Electric Company's Emerging Technologies Program is responsible for this project. It was developed as part of Pacific Gas and Electric Company's Emerging Technology - Technology Introduction Support program under internal project numberET14PGE8761. Bruce Wilcox, Abram Conant, and Rick Chitwood conducted this technology evaluation for Pacific Gas and Electric Company with overall guidance and management from Marshall Hunt and Jeff Beresini. For more information on this project, contact ETInguiries@pge.com.

LEGAL NOTICE

This report was prepared for Pacific Gas and Electric Company for use by its employees and agents. Neither Pacific Gas and Electric Company nor any of its employees and agents:

- (1) makes any written or oral warranty, expressed or implied, including, but not limited to those concerning merchantability or fitness for a particular purpose;
- (2) assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, process, method, or policy contained herein; or
- (3) represents that its use would not infringe any privately owned rights, including, but not limited to, patents, trademarks, or copyrights.

ABBREVIATIONS AND ACRONYMS

ACCA	Air Conditioning Contractors of America		
ACH	Air changes per hour		
Btu	British thermal unit		
CFM	Cubic feet per minute		
СТ	Current transducer		
EER	Energy efficiency ratio		
HERS	Home energy rating system		
HP	Heat pump		
HSPF	Heating seasonal performance factor		
HVAC	Heating, ventilating, and air conditioning		
kWh	Kilowatt hour		
RH	Relative humidity		
SEER	Seasonal energy efficiency ratio		
SHGC	Solar heat gain coefficient		
U	U-factor (thermal transmittance)		
VCHP	Variable-capacity heat pump		
VRF	Variable refrigerant flow		

CONTENTS

ABBREVIATIONS AND ACRONYMS	II
CONTENTS	_ 111
FIGURES	_vi
TABLES	VIII
Executive Summary	_ 1
	_ 6
BACKGROUND	_ 6
Central Valley Research Homes Project6	
Emerging Technology	_ 7
	_ 7
TECHNOLOGY EVALUATION	
	_ 8
Test Locations	
Grange9 Mayfair	
Test Period12	
Reference Systems13	
VCHP Systems15	
System Selection and Sizing17	
System Installation18	
Test Plan19	
Operation Schedule	
Instrumentation Plan25	
Sensor Specifications, Locations, and Calibration	
Results	32
Cooling Performance with Constant Thermostat Setpoint	

Dehumidification Performance	
Cooling Performance with Thermostat Setback and Recovery 49	
Indoor Temperature Control	
Heating Performance57	
Annual Heating Energy Use	
	_ 66
Cooling Performance66	
Heating Performance66	
Peak Electric Demand Impact66	
Impact of Setback Controls67	
Comfort Performance67	
Controls	
System Sizing68	
Installer Impact69	
Performance Verification Method of Test	
RECOMMENDATIONS	_ 69
	_ 72
APPENDIX A – MANUAL J LOAD CALCULATIONS	_ 73
Grange Load Calculations74	
Mayfair Load Calculations	
Caleb Load Calculations94	
APPENDIX B – REFERENCE SYSTEM COMMISSIONING REPORTS	107
Grange Reference System Commissioning Report	
Mayfair Reference System Commissioning Report	
Caleb Reference System Commissioning Report	
APPENDIX C - VCHSP System Inspection Reports	113
Grange VCHP System Inspection Report	
Mayfair VCHP System Inspection Report	

Appendix E –Input Power vs. Outdoor Temperature	_ 129
Appendix D – Time-Series Charts	_ 122
Caleb Second Floor VCHP System Inspection Report	
Caleb First Floor VCHP System Inspection Report	

FIGURES

Figure 1.	Grange Test House9
Figure 2.	Mayfair Test House - Front10
Figure 3.	Mayfair House – Rear (Shade structure removed before experiments)10
Figure 4.	Caleb Test House – Front and Side View11
Figure 5.	Caleb Test House – Rear View12
Figure 6.	Typical Reference Heat Pump System Installation within Conditioned Space13
Figure 7.	Typical Reference Heat Pump System Outdoor Unit Installation
Figure 8.	Electric Resistance Heaters in Every Room14
Figure 9.	Wall-Mounted VCHP Fan Coil and Reference System Air Handler at Grange House15
Figure 10.	Crawlspace-Mounted VCHP Ducted Air Handler at Mayfair House16
Figure 11.	Wall-Mounted VCHP Fan Coil at Caleb House (1 of 3) & Suspended, Shielded Sensors16
Figure 12.	Whole-House Fan in Attic and Sidewall Outside Air Inlet Automatic Damper at Caleb
Figure 13.	Equipment Used to Simulate Occupants
Figure 14.	Sensible Heat Gain Profile22
Figure 15.	Latent Heat Gain Profile24
Figure 16.	Caleb Floor Plan – Lower Floor27
Figure 17.	Caleb Floor Plan – Upper Floor
Figure 18.	Grange Floor Plan29
Figure 19.	Mayfair Floor Plan31
	Cooling Energy Linear Regressions (plotted values also include constant power draw)
Figure 21.	Dehumidification Performance
Figure 22.	Indoor Relative Humidity Distribution on Last Day of Cycle
Figure 23.	Average Hourly Indoor RH
Figure 24.	Caleb Room Temperatures during Constant Setpoint Cooling
Figure 25.	Grange Room Temperatures during Constant Setpoint Cooling
Figure 26.	Mayfair Room Temperatures during Constant Setpoint Cooling

Figure 27. VCHP Annual Cooling Energy Savings Relative to the Reference System	
Figure 28. VCHP Cooling Savings Adjusted for Air Distribution Energy Impacts47	
Figure 29. Cooling Mode Cycling Characteristics (constant setpoint days??)49	
Figure 30. Caleb Room Temperatures during Cooling Recovery 50	
Figure 31. Grange Room Temperatures during Cooling Recovery 51	
Figure 32. Mayfair Room Temperatures during Cooling Recovery 51	
Figure 33. Caleb Recovery Energy Performance53	
Figure 34. Grange Recovery Energy Performance	
Figure 35. Mayfair Recovery Energy Performance54	
Figure 36. Hourly Cooling Energy Use Profiles	
Figure 37. Heating Energy Use Linear Regressions58	
Figure 38. VCHP Annual Heating Energy Savings61	
Figure 39. Caleb Room Temperatures during Constant Setpoint Heating62	
Figure 40. Grange Room Temperatures during Constant Setpoint Heating63	
Figure 41. Mayfair Room Temperatures during Constant Setpoint Heating63	
Figure 42. Heating Mode Cycling Characteristics64	
Figure 42. Heating Mode Cycling Characteristics	
Figure 43. Caleb Reference Heat Pump in Cooling Mode	
Figure 43. Caleb Reference Heat Pump in Cooling Mode 130 Figure 44. Caleb Reference Heat Pump in Heating Mode 130 Figure 45. Caleb 1 st Floor VCHP System in Cooling Mode 131 Figure 46. Caleb 1 st Floor VCHP in Heating Mode 131	
Figure 43. Caleb Reference Heat Pump in Cooling Mode	
Figure 43. Caleb Reference Heat Pump in Cooling Mode 130 Figure 44. Caleb Reference Heat Pump in Heating Mode 130 Figure 45. Caleb 1 st Floor VCHP System in Cooling Mode 131 Figure 46. Caleb 1 st Floor VCHP in Heating Mode 131	
Figure 43. Caleb Reference Heat Pump in Cooling Mode130Figure 44. Caleb Reference Heat Pump in Heating Mode130Figure 45. Caleb 1 st Floor VCHP System in Cooling Mode131Figure 46. Caleb 1 st Floor VCHP in Heating Mode131Figure 47. Caleb 2 nd Floor VCHP System in Cooling Mode132	
Figure 43. Caleb Reference Heat Pump in Cooling Mode130Figure 44. Caleb Reference Heat Pump in Heating Mode130Figure 45. Caleb 1 st Floor VCHP System in Cooling Mode131Figure 46. Caleb 1 st Floor VCHP in Heating Mode131Figure 47. Caleb 2 nd Floor VCHP System in Cooling Mode132Figure 48. Caleb 2 nd Floor VCHP in Heating Mode132	
Figure 43. Caleb Reference Heat Pump in Cooling Mode130Figure 44. Caleb Reference Heat Pump in Heating Mode130Figure 45. Caleb 1 st Floor VCHP System in Cooling Mode131Figure 46. Caleb 1 st Floor VCHP in Heating Mode131Figure 47. Caleb 2 nd Floor VCHP System in Cooling Mode132Figure 48. Caleb 2 nd Floor VCHP in Heating Mode132Figure 49. Grange Reference Heat Pump in Cooling Mode133	
Figure 43. Caleb Reference Heat Pump in Cooling Mode130Figure 44. Caleb Reference Heat Pump in Heating Mode130Figure 45. Caleb 1 st Floor VCHP System in Cooling Mode131Figure 46. Caleb 1 st Floor VCHP in Heating Mode131Figure 47. Caleb 2 nd Floor VCHP System in Cooling Mode132Figure 48. Caleb 2 nd Floor VCHP in Heating Mode132Figure 49. Grange Reference Heat Pump in Cooling Mode133Figure 50. Grange Reference Heat Pump in Heating Mode133	
Figure 43. Caleb Reference Heat Pump in Cooling Mode130Figure 44. Caleb Reference Heat Pump in Heating Mode130Figure 45. Caleb 1 st Floor VCHP System in Cooling Mode131Figure 46. Caleb 1 st Floor VCHP in Heating Mode131Figure 47. Caleb 2 nd Floor VCHP System in Cooling Mode132Figure 48. Caleb 2 nd Floor VCHP in Heating Mode132Figure 49. Grange Reference Heat Pump in Cooling Mode133Figure 50. Grange Reference Heat Pump in Heating Mode133Figure 51. Grange VCHP in Cooling Mode134	
Figure 43. Caleb Reference Heat Pump in Cooling Mode130Figure 44. Caleb Reference Heat Pump in Heating Mode130Figure 45. Caleb 1 st Floor VCHP System in Cooling Mode131Figure 46. Caleb 1 st Floor VCHP in Heating Mode131Figure 47. Caleb 2 nd Floor VCHP System in Cooling Mode132Figure 48. Caleb 2 nd Floor VCHP in Heating Mode132Figure 49. Grange Reference Heat Pump in Cooling Mode133Figure 50. Grange Reference Heat Pump in Heating Mode133Figure 51. Grange VCHP in Cooling Mode134Figure 52. Grange VCHP in Heating Mode134	
Figure 43. Caleb Reference Heat Pump in Cooling Mode130Figure 44. Caleb Reference Heat Pump in Heating Mode130Figure 45. Caleb 1 st Floor VCHP System in Cooling Mode131Figure 46. Caleb 1 st Floor VCHP in Heating Mode131Figure 47. Caleb 2 nd Floor VCHP System in Cooling Mode132Figure 48. Caleb 2 nd Floor VCHP in Heating Mode132Figure 49. Grange Reference Heat Pump in Cooling Mode133Figure 50. Grange Reference Heat Pump in Heating Mode133Figure 51. Grange VCHP in Heating Mode134Figure 52. Grange VCHP in Heating Mode134Figure 53. Mayfair Reference Heat Pump in Cooling Mode135	

TABLES

Table 1. VCHP Annual Cooling Energy Savings	3
Table 2. VCHP Annual Heating Energy Savings	4
Table 3. Grange House Characteristics (as tested)	9
Table 4. Mayfair House Characteristics (as tested)	11
Table 5. Caleb House Characteristics	12
Table 6. Reference Systems	15
Table 7. VCHP Systems	17
Table 8. Cooling and Heating Load Calculation Summary (Details in Appendix A)	18
Table 9. Summary of Reference-System Commissioning Data	18
Table 10. Internal Sensible Heat Gain Profiles	21
Table 11. Internal Latent Heat Gain Profiles	23
Table 12. Internal Heat Gain Monthly Multipliers – Used for BothSensible and Latent Heat Gains	24
Table 13. Sensor Specifications and Locations - Caleb	25
Table 14. Sensor Specifications and Locations - Grange	28
Table 15. Sensor Specifications and Locations - Mayfair	30
Table 16. Constant Power Draws	34
Table 17. Cooling Energy Regression Coefficients	34
Table 18. Annual Cooling Energy Projections (Unadjusted for indoor conditions)	35
Table 19. Indoor Humidity Control Characteristics	37
Table 20. Latent Capacity Difference Estimated Energy Impact	40
Table 21. Cooling Temperature Control Performance Relative to ACCA Manual RS	40
Table 22. Performance Normalized Annual Cooling Energy	45
Table 23. VCHP Annual Cooling Energy Savings	46
Table 24. Maximum Hourly Cooling kWh at Constant Setpoint	48
Table 25. Cooling Recovery Temperature Control Relative to Manual RS	50
Table 26. Cooling Energy Regression Coefficients	55
Table 27. Maximum Hourly kWh during Recovery	56
Table 28. Heating Energy Use Regression Coefficients	59
Table 29. Annual Heating Energy Use	60
Table 30. VCHP Annual Heating Energy Savings	60

Table 31.	Heating Temperature Control Performance Relative to	
	Manual RS	62
Table 32.	VCHP Defrost Characteristics	65

EXECUTIVE SUMMARY

PROJECT GOALS

This project evaluated the installed performance of variable capacity heat pump (VCHP) mini- and multi-split systems in three (3) California research homes in Stockton, California. The two primary areas of focus were:

- Energy performance: VCHP systems with SEER ratings as high as 38 and HSPF ratings as high as 15 are now available. The current federal code minimum efficiency central forced air split system heat pumps are rated 14 SEER and 8.2 HSPF. This project measured the installed energy performance of VCHP systems in comparison to minimum efficiency single speed forced air heat pump units to determine if the standard efficiency rating metrics are a reliable predictor of energy use in California homes.
- 2) Comfort: VCHP mini- and multi-split systems may be ducted or ductless. The ductless systems offer the promise of energy savings through reduced air handler fan power and elimination of duct losses. However, comfort may be comprised in rooms without a ductless fan coil. Additionally, variable-speed systems have complex controls some of which are not accessible in the field. The controls modulate fan and compressor speeds in ways that may affect comfort performance relative to the single-speed ducted systems that are typically used in California residences.

PROJECT DESCRIPTION

The project installed VCHP systems and minimum efficiency reference forced air heat pump systems into three existing houses in Stockton, California. The houses ranged in vintage from 1948 to 2005. The houses received shell improvements through a previous research project (Wilcox) and are more efficient with lower heating and cooling loads than the typical existing house of the same vintage. Heating and cooling loads approach those being achieved by new houses built to current efficiency standards. The houses were unoccupied, and internal gains from simulated occupancy were provided by electric heaters and humidifiers controlled by the data acquisition system to follow the sensible and latent gains magnitude and schedule specified in Title 24.

A flip/flop experimental design was applied, with the VCHP and reference systems alternating every three days during the cooling season and every two days during the heating season. The first day of the three-day cooling season cycle simulated a daytime thermostat setup and evening recovery schedule, while days two and three held a constant 76°F thermostat setpoint throughout the day. To simulate common best practice in Stockton's hot dry central valley climate a whole house fan was enabled during the cooling season between sunrise and 11:00PM (see page 19 for details). A constant thermostat setpoint was used at all times during heating season.

The Reference heat pump systems were single-speed, single-zone, standard ducted split systems with ductwork entirely inside the conditioned space. The systems were installed and commissioned according to Title 24 standards, with refrigerant charge verified to be correct based on the manufacturer specified amount of subcooling. Airflow was tested and confirmed to be between 403 and 456 cfm/ton.

The VCHP system designs were specified by the manufacturers, installed by the manufacturers' preferred contractors, and commissioned with controls settings specified by the manufacturers. The VCHP system configurations varied by house:

- Mayfair House (one-story, 1,104 ft²): Ducted single-zone mini split
- Grange House (one-story, 848 ft²): Ductless single-head mini split with a ducted transfer fan supplying air to the two unconditioned bedrooms which had open doors
- Caleb House (two-story, 2,076 ft²): Ductless single-head mini split on the first floor, and ductless two-head multi split on the second floor with two ducted transfer fans supplying air to the two unconditioned bedrooms which had open doors

The houses and HVAC systems were instrumented and monitored through one cooling and one heating season, summer 2015 and winter 2015-16. Energy performance was evaluated by characterizing daily energy use of each system as a function of daily average outdoor temperature and then projecting the results to the Title 24 weather file for Stockton. The projected annual energy consumption of the VCHP and reference systems were then compared to their relative efficiency ratings to evaluate the reliability of ratings as a predictor of installed energy performance.

Comfort performance was evaluated by comparing the monitored performance to ACCA Manual RS (ACCA 2015) guidelines for room temperature delta-to-setpoint and room-to-room temperature difference. Each system's ability to maintain indoor relative humidity below 60% maximum was also evaluated.

PROJECT FINDINGS/RESULTS

The project found mixed results with respect to VCHP system comfort. Findings include:

- Despite an optimistic experimental design that kept the interior doors to all rooms open at all times and used constantly-operating transfer fans to deliver air to rooms not directly served by an indoor terminal unit, the ductless VCHP systems did not maintain temperature comfort levels equivalent to the reference systems.
 - The ductless VCHP system at the 848 ft² single-story Grange house provided good temperature control during cooling season, but in heating season was only able to meet ACCA Manual RS guidelines for room-thermostat temperature 32% of the time.
 - The ductless VCHP systems at the 2,076 ft² two story Caleb house was only able to meet Manual RS guidelines for room-thermostat temperature 52% of the time during cooling season and 20% of the time in heating season.
- The ductless VCHP systems experienced longer temperature recovery times following a thermostat setup in cooling than the reference systems. Compliance with Manual RS guidelines for room-thermostat temperature fell to 66% at the Grange house and 32% at the Caleb house when a setup and recovery schedule was used. The rooms not directly served by an indoor terminal unit were especially problematic during recovery.
- The ducted VCHP system (Mayfair house) provided better temperature comfort levels than the reference system when a constant thermostat setting was used, but did so by running the indoor fan constantly at high speed during the cooling season. The constant high speed fan operation caused two problems:

- The VCHP system predominantly ran at low compressor speeds. With the compressor on low speed and the fan on high speed, the system provided little or no latent cooling. Indoor humidity levels exceeded 60% relative humidity 23% of the time.
- Energy use was significantly increased.
- The ductless mini-split system at the Grange house also provided very little latent cooling during the cooling season, with indoor humidity levels exceeding 60% relative humidity 39% of the time. The lack of latent capacity appears to be related to controls programming that did not modulate indoor fan speed with compressor speed.
- Problems were experienced with VCHP system controls. The Mayfair system required a controls setting modification due to inability to meet cooling load on hot days. The Caleb VCHP systems experienced ongoing temperature control problems throughout the heating season. Temperatures in rooms where the thermostatic controls were located were recorded falling to as much as 6°F below setpoint.
- The lack of latent cooling provided by the VCHP systems at two houses, Grange and Mayfair, led to indoor relative humidity exceeding 60% for a significant number of hours, as noted above. At the third house, Caleb, the VCHP system did not provide quite as much latent cooling as the reference system but succeeded in keeping relative humidity below 60% for most hours.

VCHP energy performance relative to their efficiency ratings was also mixed when compared to performance of the reference systems. Table 1 shows that estimated annual cooling energy savings for the VCHP systems relative to the minimum efficiency reference systems ranged from 10% better than expected (Caleb) to 31% below expectations (Mayfair) based on relative efficiency ratings. Table 2 shows annual heating energy savings exceeded expectations at all three houses, ranging from 14% to 16% better.

TABLE 1. VCHP ANNUAL COOLING ENERGY SAVINGS					
Site	System	SEER	SEER Predicted Cooling Energy Savings	Monitored Savings, Unadjusted	Performance Normalized Savings **
Caleb	Reference HP	14			
	VCHP	20.9*	33%	43%	41%
Grange	Reference HP	14			
	VCHP	25.5	45%	41%	33%
Mayfair	Reference HP	14			
	VCHP	16	13%	-18%	-21%

*Capacity weighted average of the two VCHP systems at Caleb.

** Normalized savings include adjustments for differences in latent cooling and indoor air temperature.

ET14PGE8761

TABLE 2. VCHP Annual Heating Energy Savings				
Site	System	HSPF	HSPF PREDICTED HEATING ENERGY SAVINGS	Monitored Savings
Caleb	Reference HP	8.2		
	VCHP	10.5*	22%	37%
Grange	Reference HP	8.2		
	VCHP	11.5	29%	45%
Mayfair	Reference HP	8.2		
	VCHP	10	18%	32%

*Capacity weighted average of the two VCHP systems at Caleb

The energy consumption of constantly operating VCHP fans is a major concern.

- The ducted VCHP system (Mayfair house) operated the air handler fan constantly during cooling season, and as a result the projected seasonal cooling energy use was 18% higher than the reference system. Based on SEER ratings, the VCHP system was expected to use 13% less energy than the reference system, and the constantly operating fan was the primary contributor to the shortfall of 31%.
- The transfer fans that were installed with the ductless VCHP systems (Caleb and Grange houses) are not commercially available for use in that application, and they provided significantly lower energy use than would be possible with standard commercially available products. The ducted transfer fans used in this study operated at 0.12 W/cfm (Grange) and 0.04 cfm (Caleb). Efficiency of standard through-the-wall transfer fans is roughly 1.5 W/cfm. Standard transfer fans are estimated to increase energy use such that VCHP cooling energy savings would fall to approximately 40% below expectations at both of the houses with ductless systems.

The VCHP systems provided significant summer peak HVAC electricity demand reductions of 44% to 64% when the systems were operated with a constant thermostat setpoint, compared to the reference systems under similar outdoor temperature conditions. Demand reductions with a thermostat setup and recovery schedule were uncertain due to varying comfort conditions and the potential that occupants would force the systems into higher speeds than were observed during recovery periods in this study.

PROJECT RECOMMENDATIONS

Based on the results of this study, additional research is recommended to:

- Develop a better understanding of ductless VCHP system comfort performance under different scenarios, including with interior doors closed and without constantly operating transfer fans.
- Monitor ductless VCHP energy performance when standard transfer fans are used.
- Perform a direct comparison of ducted and ductless VCHP system comfort and energy performance in the same house.
- Develop efficiency ratings and methods of test that are more applicable to the dynamic capabilities of VCHP systems than the current DOE test methods, which lock variable-speed systems at fixed speeds. The DOE ratings are not demonstrated to be

representative of installed performance. Improved test methods are needed which allow these systems to modulate as instructed by their control programming, thereby functioning as they would in field installations.

INTRODUCTION

Variable Compressor Speed Heat Pump (VCHP) systems are an emerging technology in California and the rest of North America even though they are common in many parts of the world. Prior research has focused primarily on heating mode, while the cooling mode performance is also of concern in California.

VCHP systems with very high SEER and HSPF ratings based on current test methods (AHRI 210-240) are now available. However, these VCHP systems are currently not credited with improved energy performance in the California Title 24 building standards due to a number of areas of uncertainty regarding installed performance. These include:

- The efficiency ratings are not demonstrated to reliably represent installed performance.
 - Phase I of the Central Valley Research House (CVRH) project (described below) found VCHP system performance well below expectations based on efficiency ratings.
 - Efficiency rating test procedures require locking variable-speed equipment at a set of constant speeds, thereby defeating the controls logic and producing results substantially different from real world installations.
- Ductless VCHP efficiency ratings do not reflect supplemental air distribution systems which may be required to achieve comfort or comply with building code requirements for heat delivery.
- At present it is not possible to verify proper installation and that performance is meeting expectations.

Evaluation of VCHP system installed performance is needed to develop a better understanding of this emerging technology, appropriate installation practices, and more reliable estimates of energy consumption in California homes.

BACKGROUND

CENTRAL VALLEY RESEARCH HOMES PROJECT

The houses used in this study are three of four houses studied in the CVRH project, a multi-year effort to test residential energy efficiency measures and technologies in four unoccupied, highly instrumented homes of different vintages in Stockton, California.

The CVRH project began with funding from the California Energy Commission to perform three experiments.

- 1) Develop packages of envelope and HVAC efficiency retrofits that achieve 50% to 75% savings in heating and cooling energy in the experimental homes.
- 2) Compare measured energy consumption at the four experimental homes with energy consumption estimates by six HERS Raters at each of the four homes.

 Compare monitored energy use of variable compressor speed heat pumps (VCHP) to reference heating and cooling systems installed in the experimental homes.

Project timeline:

- Four homes leased in 2011
- 2012-2013 collected baseline data
- 2013-2014 installed first package of upgrades and collected data
- 2014-2015 second package of upgrades and data collected

Among the findings of the CVRH project was that the all four of the VCHP systems installed during that study underperformed by a very large margin in the cooling mode, and two of the four systems seriously underperformed in heating mode.

EMERGING TECHNOLOGY

Starting with the Summer of 2015, the PG&E Codes & Standards and Emerging Technology programs provided funding for the next phase of CVRH. The subject of this study is an emerging HVAC technology: variable capacity heat pumps (VCHP), which are also known as mini-split and multi-split heat pumps. In some configurations these systems are called variable refrigerant flow (VRF) systems. These systems are commonly used in Asia and Europe but have not been widely adopted in the United States. These machines have the potential to provide more efficient heating and cooling than conventional single-speed heat pumps.

This study uses three of the original four homes to install and test three configurations of VCHP systems.

- 1) One house has a single outdoor unit with single wall-mounted indoor unit.
- 2) A second house has a single outdoor unit with a short-duct indoor unit mounted in a crawlspace.
- 3) The third house has two systems: the lower floor has a single outdoor unit and single wall-mounted indoor unit, and the upper floor has a single outdoor unit connected to two indoor wall-mounted units.

ASSESSMENT OBJECTIVES

The objectives of this study are:

- To assess energy savings performance of VCHP systems compared to standard split system heat pumps in support of annual performance simulation as required by the CEC Title 24 Part 6 Building Energy Efficiency Standards (Title 24).
- To assess the ability of the systems to control indoor temperature and relative humidity to provide comfort equivalent to existing central ducted forced air systems

• To identify best practices for VCHP system design, installation, and performance verification.

TECHNOLOGY EVALUATION

The project compares the cooling and heating performance of conventional minimumefficiency central ducted split system heat pumps to VCHP systems. The study was conducted in three of the Stockton CVRH research houses. In these unoccupied and extensively instrumented houses, occupants were simulated with computer controlled equipment producing sensible and latent internal gains to match the Title 24 schedules. In the cooling season the previously installed whole house fans are enabled each night. In the hot dry Stockton climate, night time temperatures are in the 60s and the air is low in humidity, making night ventilation a long-standing cooling strategy. The control strategy for the whole-house fans is described on page 19.

Each house has both a reference system, which is installed within the conditioned space, and a VCHP system. During both the cooling and heating seasons, the HVAC units were operated on a flip/flop schedule. Details are described in the section below titled *Test Plan*.

The study was designed to produce the best possible installed VCHP performance. The VCHP system models and sizing were specified by the manufacturers. Installation and commissioning was conducted by the manufacturer's preferred contractor, under the guidance of the manufacturer. Room to room custom transfer fans were installed to provide the cooling and heating to rooms not directly served by a terminal unit.

TEST METHODOLOGY

TEST LOCATIONS

The three houses in this study - referred to as Grange, Mayfair, and Caleb - are located in Stockton, California. Stockton is located in California Climate Zone 12, in the middle part of California's Central Valley. This inland region is characterized by cooler winters and hotter summer's than the San Francisco Bay Area to its west. The winter rainy period extends from November to April, but is generally fairly mild. Summer high temperatures can exceed 110°F but averages 93 in August. Daily lows average 58 in August due to a mesoscale sea breeze which cools the area into the 60s except when a peak hot spell occurs. On an annual basis, there are more Heating Degree Days (HDD) than Cooling Degree Days (CDD). A good summary of Climate Zone 12 characteristics can be found in "The Pacific Energy Center's Guide to California Climate Zones." (Pacific Energy Center, 2006).

Each of the homes received energy efficiency upgrades as part of an earlier study (Wilcox, to be published as a final research report by the California Energy Commission). Therefore, the envelope performance is improved compared to original construction so that it approaches what is required by Title 24 for new dwellings.

GRANGE

Built in 1948, the Grange Avenue house is the oldest of the test houses. At 848 ft^2 , it is also the smallest. It is a two-bedroom, single-story rectangular house with slab on grade construction.

FIGURE 1. GRANGE TEST HOUSE

TABLE 3. GRANGE HOUSE CHARACTERISTICS (AS TESTED)

Floor Area	848 ft ²
Year Built	1948
Stories	1
Bedrooms	2
Floor type	Slab on grade
Air Leakage	438 CFM50 (3.8 ACH50)
Attic Insulation	852 ft ² , R-49 loose fill fiberglass
Attic Ventilation	15.5 ft ² (1 ft ² vent / 55 ft ² ceiling area)
Wall Insulation	R-10 loose fill fiberglass
Windows	78 ft ² , vinyl, double-pane, low-E ² , U 0.30, SHGC 0.25
IAQ Ventilation	ASHRAE 62.2 compliant bath exhaust fan, 39 CFM, 5.5 watts
Whole-house fan	Two whole-house fans installed in ceiling. Total 1213 CFM and 141 watts
Heating Load	12,775 Btu/hr (see Appendix A)
Cooling Load	10,253 Btu/hr (see Appendix A)

MAYFAIR

The house on West Mayfair in Stockton is the second oldest test home. This threebedroom home was built in 1953 and has a floor area of 1,104 square feet. It is a simple one-story rectangular building over a crawlspace

FIGURE 2. MAYFAIR TEST HOUSE - FRONT

FIGURE 3. MAYFAIR HOUSE - REAR (SHADE STRUCTURE REMOVED BEFORE EXPERIMENTS)

ET14PGE8761

TABLE 4. MAYFAIR HOUSE CHARACTERISTICS (AS TESTED)				
Floor Area	1,104 ft ²			
Year Built	1953			
Stories	1			
Bedrooms	3			
Floor type	Crawlspace			
Air Leakage	1,248 CFM50 (9.3 ACH50)			
Attic Insulation	1,104 ft ² , R-49 loose fill fiberglass			
Attic Ventilation	20 ft ² (1 ft ² vent / 55 ft ² ceiling area)			
Wall Insulation	R-13 loose fill fiberglass			
Crawlspace Efficiency	Uninsulated, plastic membrane on floor, code-minimum vent area			
Windows	197 ft ² , vinyl, double-pane, low-E ² , U 0.30, SHGC 0.25			
IAQ Ventilation	ASHRAE 62.2 compliant bath exhaust fan, 50 CFM, 3.0 watts			
Whole-house fan	Three whole-house fans installed in ceiling. Total 1,638 cfm and 202.5 watts			
Heating Load	15,583 Btu/hr (see Appendix A)			
Cooling Load	16,175 Btu/hr (see Appendix A)			

CALEB

Built in 2005, the four bedroom, 2,076 ft^2 house on Caleb Circle is the newest and largest of the test houses. It is a two-story rectangular home with a portion of the second story overlapping the garage

FIGURE 4. CALEB TEST HOUSE - FRONT AND SIDE VIEW

ET14PGE8761

FIGURE 5. CALEB TEST HOUSE - REAR VIEW

TABLE 5. CALEB HOUSE CHARACTERISTICS

Floor Area	2,076 ft ²
Year Built	2005
Stories	2
Bedrooms	4
Floor type	Slab on grade
Air Leakage	1,615 CFM50 (5.4 ACH50)
Attic Insulation	R-30 loose fill fiberglass + PolyFoam (3M) PolySet spray foam system under roofing tiles
Attic Ventilation	16.7 ft ² (1 ft ² vent / 66 ft ² ceiling area)
Wall Insulation	R-17
Windows	Vinyl, double-pane, low-E, U 0.35, SHGC 0.30
IAQ Ventilation	ASHRAE 62.2 compliant bath exhaust fan, 64 CFM, 12.1 watts
Whole-house fan	Four whole-house fans installed in ceiling. Total 2,075 CFM and 275 watts
Heating Load	21,577 Btu/hr (see Appendix A)
Cooling Load	25,084 Btu/hr (see Appendix A)

TEST PERIOD

Systems were installed during spring 2015. Cooling season data cover the period of July 2015 through October 2015. Heating system data cover the period of December 12, 2015 through March 8, 2016.

REFERENCE SYSTEMS

The reference systems are standard split-system forced air heat pumps with the air handlers and ducts installed within the conditioned space suspended from the ceiling. Figure 6 illustrates the typical installation. Table 6 lists reference system specifications for each of the three houses. These systems represent minimum efficiency equipment allowed by Title 24 building energy standards. Spiral-wire helix plastic ducts with factory insulation were used, with duct runs equal to those commonly found in new construction. Routing of the ducts is similar to what is commonly found in California homes.

FIGURE 6. TYPICAL REFERENCE HEAT PUMP SYSTEM INSTALLATION WITHIN CONDITIONED SPACE

FIGURE 7. TYPICAL REFERENCE HEAT PUMP SYSTEM OUTDOOR UNIT INSTALLATION



FIGURE 8. ELECTRIC RESISTANCE HEATERS IN EVERY ROOM

ET14PGE8761

TABLE 6.	REFERENCE SYSTEMS

House	DESCRIPTION	LOCATION	EQUIPMENT SPECIFICATIONS	
Grange	1.5 ton split system heat pump	Living Room - ducts hung from ceilings	SEER: EER: Rated Cooling Capacity: HSPF: Rated Heating Capacity:	14 11.5 17,600 Btu/hr 8.2 18,000 Btu/hr
Mayfair	2 ton split system heat pump	Dining Room - ducts hung from ceilings	SEER: EER: Rated Cooling Capacity: HSPF: Rated Heating Capacity:	14 11.5 23,200 Btu/hr 8.2 23,200 Btu/hr
Caleb	2.5 ton split system heat pump	2nd Floor Landing - ducts hung from ceilings	SEER: EER: Rated Cooling Capacity: HSPF: Rated Heating Capacity:	14 12 28,000 Btu/hr 8.2 27,800 Btu/hr

VCHP Systems

Table 7 lists the type and basic specifications for the VCHP systems installed in each house.

FIGURE 9. WALL-MOUNTED VCHP FAN COIL AND REFERENCE SYSTEM AIR HANDLER AT GRANGE HOUSE

ET14PGE8761

FIGURE 10. CRAWLSPACE-MOUNTED VCHP DUCTED AIR HANDLER AT MAYFAIR HOUSE

FIGURE 11. WALL-MOUNTED VCHP FAN COIL AT CALEB HOUSE (1 OF 3) & SUSPENDED, SHIELDED SENSORS

ET14PGE8761

TABLE 7.	VCHP Systems			
House	DESCRIPTION	LOCATION OF AIR HANDLER	EQUIPMENT SPECIFICATIONS	
Grange	1 ton mini-split w/air transfer fan to bedrooms	Living Room (17 ft piping)	SEER: EER: Rated Cooling Capacity: HSPF: Rated Heating Capacity:	25.5 13.8 11,000 11.5 12,000
Mayfair	1 ton mini-split with ducted air handler	Crawlspace (22.2 ft piping)	SEER: EER: Rated Cooling Capacity: HSPF: Rated Heating Capacity:	16 12.5 11,500 10 13,600
Caleb 1 st Floor	1 ton mini-split	Dining Room (30 ft piping)	SEER: EER: Rated Cooling Capacity: HSPF: Rated Heating Capacity:	23 12.8 12,000 12.5 14,400
Caleb 2 nd Floor	1.5 ton multi-split with 2 heads w/air transfer fans to bedrooms	M.Bed and Landing (45.5 and 68 ft piping)	SEER: EER: Rated Cooling Capacity: HSPF: Rated Heating Capacity:	19.5 12.6 18,000 9.2 22,000

TABLE 7. VCHP SYSTEMS

The air transfer fans at the Grange and Caleb houses were not standard commercially available products for this application. They were high efficiency bathroom exhaust fans that were customized to function as room-to-room air transfer fans with extremely low watt draw. At Grange, measured performance for the single transfer fan is 9 watts at 75 cfm (0.12 W/cfm). At Caleb, two transfer fans draw a combined total of 10 watts and move a total of 230 cfm (0.04 W/cfm). Transfer fan products that are currently available on the market have power draws that are 5 to 10 times greater than the customized fans used in this study. Power for standard through-the-wall fans was measured at 50 watts each in a separate study. Because these fans are typically installed to operate constantly, their power draw is a significant contributor to annual energy consumption.

SYSTEM SELECTION AND SIZING

Cooling and heating load calculations results for each house are included as an attachment to this report. Result are summarized in Table 8.

Reference system selection and sizing was performed by the research team. Systems were selected as the smallest available that was rated to meet the calculated cooling loads.

VCHP systems were selected by the manufacturers. The manufacturers were provided with load calculations and information about the houses. Equipment combinations and sizing were specified by the manufacturer.

TABLE 8. COOLING AND HEATING LOAD CALCULATION SUMMARY (DETAILS IN APPENDIX A)

House	Cooling Load (Btu/hr)	Heating Load (Btu/hr)	Airflow (cfm)
Grange	10,253	12,775	499
Mayfair	16,175	15,583	863
Caleb	25,084	21,577	1,191

SYSTEM INSTALLATION

Reference systems were installed and commissioned by the research team during the spring of 2015. Airflow to each room was adjusted following initial operation to provide even room temperatures. Commissioning reports for the reference systems are included in Appendix B.

TABLE 9. SUMMARY OF REFERENCE-SYSTEM COMMISSIONING DATA

House	Nominal Capacity (tons)	Mode	Measured Airflow (cfm) (cfm/ton)		Measured (watts)	Fan Power (Watts/cfm)
Grange	1.5	Cooling	684	456	201	0.29
		Heating	642	428	195	0.30
Mayfair	2.0	Cooling	827	414	283	0.34
		Heating	824	412	277	0.34
Caleb	2.5	Cooling	1057	423	426	0.40
		Heating	1008	403	412	0.41

VCHP systems were each installed by contractors selected by the equipment manufacturers. Operating mode and other controls options were specified and set by the installing contractors and equipment manufacturers, and are not necessarily the factory default configurations. VCHP system manufacturers do not provide information or test methods that would allow measured performance verification. The research team attempted to measure VCHP system installed performance, but results were inconclusive due to transient controls behavior, lack of detailed performance data, and lack of information regarding correlation of any performance data that is available to specific speeds or control modes. Systems were inspected by a licensed HERS rater using an inspection verification checklist proposed by AHRI. Completed checklists are included in Appendix C. Inspectors weighed refrigerant charge and measured inlet and outlet air temperatures for the indoor cooling in both heating and cooling modes.

TEST PLAN

OPERATION SCHEDULE

COOLING MODE

The project applied a flip/flop experimental design. In cooling mode, the data acquisition system (DAS) control system alternated between the VCHP and Reference HP systems every three days. System changeover occurred at midnight. The following control schedule was applied to both systems:

- Day One Daytime thermostat setup and evening recovery schedule. Heat pump systems were disabled and house temperatures were uncontrolled until 5PM. At 5PM the systems were enabled with a 76°F thermostatic setpoint, which remained constant through the end of the day.
- 2) Days Two and Three Heat pump systems were enabled all day, with a constant 76 °F setpoint.

On all days, the whole house fan was enabled between sunrise and 11PM to align with Title 24 simulation assumptions. The whole house fan was controlled to operate if the outdoor temperature was at least 10.8 °F cooler than the indoor temperature, and the indoor temperature was above 68 °F. Figure 12 shows photos of a whole-house fan system installation at one of the houses.

FIGURE 12. WHOLE-HOUSE FAN IN ATTIC AND SIDEWALL OUTSIDE AIR INLET AUTOMATIC DAMPER AT CALEB

On days where the ductless VCHP systems at the Caleb and Grange houses were active, the transfer fans were operated constantly (drawing 10 and 9 watts, respectively).

HEATING MODE

In heating mode, the DAS control system alternated between the VCHP, Reference HP, and electric resistance heaters every two days. System changeover occurred at 7AM. The 7AM changeover was designed to minimize solar heating and storage effects that could carry over from a warm afternoon into the morning of the next day. The heating systems were enabled all day, with a constant 68 °F setpoint.

On days where the ductless VCHP systems at the Caleb and Grange houses were active, the transfer fans were operated constantly.

OCCUPANT SIMULATION

Internal heat gains due to occupants and appliances are simulated using electric heaters and a humidifier. The equipment is programmed to produce heat and moisture to match sensible and latent heat gain profiles used in Title 24-2013 compliance software. The sensible heat gain profiles are shown in Table 10 and the latent heat gain profiles are shown in Table 11. The gains are assumed to vary monthly per the multipliers in Table 12. The algorithms used to develop the profiles are described in the document *2013 Residential ACM Algorithms* (CEC 2013).

The electric heaters that simulate the sensible heat gain are turned on each 5 minutes for the amount of time necessary to provide the desired average heat rate for the hour.

The humidifier that simulates the latent heat gain is turned on every 15 minutes and runs for the amount of time necessary to provide the desired average latent heat rate for the hour. The humidifier is run only during the summer season for this study.

FIGURE 13. EQUIPMENT USED TO SIMULATE OCCUPANTS

ET14PGE8761

TABLE 10. INTERNAL SENSIBLE HEAT GAIN PROFILES

	Caleb	Grange	MAYFAIR
Hour	(кѠн)	(кѠн)	(кѠн)
1	0.47278	0.30891	0.33244
2	0.44589	0.29463	0.31648
3	0.42572	0.28454	0.30471
4	0.43160	0.28707	0.30807
5	0.42824	0.28454	0.30555
6	0.57110	0.39883	0.42404
7	0.72908	0.51816	0.55009
8	0.64925	0.43244	0.46522
9	0.47866	0.29715	0.32404
10	0.38034	0.22404	0.24757
11	0.38202	0.22572	0.24841
12	0.37614	0.22320	0.24505
13	0.35681	0.21312	0.23328
14	0.36438	0.21732	0.23833
15	0.39715	0.24253	0.26522
16	0.45429	0.28538	0.31059
17	0.57110	0.37026	0.39967
18	0.72740	0.47530	0.51228
19	0.92992	0.59883	0.64925
20	1.09463	0.70387	0.76522
21	1.09547	0.70555	0.76606
22	0.98791	0.63160	0.68623
23	0.76942	0.49127	0.53328
24	0.57950	0.36438	0.39547

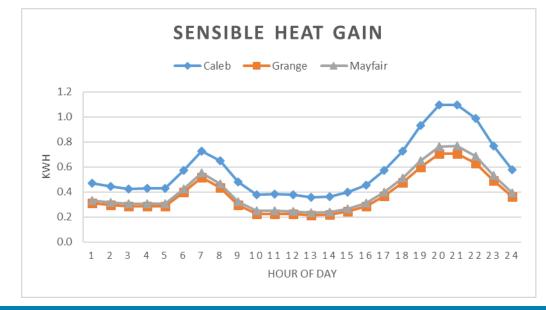


FIGURE 14. SENSIBLE HEAT GAIN PROFILE

ET14PGE8761

TABLE 11. INTERNAL LATENT HEAT GAIN PROFILES

	CALEB		Gran	GE	MAYE	AIR
Hour	(кWн)	(LITERS)	(кWн)	(LITERS)	(кWн)	(LITERS)
1	0.14874	0.21825	0.12353	0.18126	0.12521	0.18372
2	0.14538	0.21331	0.12101	0.17756	0.12269	0.18002
3	0.14454	0.21208	0.12017	0.17632	0.12185	0.17879
4	0.14454	0.21208	0.12017	0.17632	0.12185	0.17879
5	0.14118	0.20715	0.11849	0.17386	0.12017	0.17632
6	0.20840	0.30579	0.18319	0.26880	0.18571	0.27250
7	0.27731	0.40690	0.24790	0.36374	0.24958	0.36621
8	0.21092	0.30949	0.18067	0.26510	0.18319	0.26880
9	0.12857	0.18865	0.10252	0.15043	0.10420	0.15290
10	0.08739	0.12823	0.06496	0.09531	0.06655	0.09766
11	0.08908	0.13070	0.06588	0.09667	0.06748	0.09901
12	0.08908	0.13070	0.06588	0.09667	0.06748	0.09901
13	0.08739	0.12823	0.06496	0.09531	0.06655	0.09766
14	0.08908	0.13070	0.06588	0.09667	0.06748	0.09901
15	0.10504	0.15413	0.08042	0.11800	0.08218	0.12059
16	0.12857	0.18865	0.10252	0.15043	0.10420	0.15290
17	0.17563	0.25770	0.14454	0.21208	0.14706	0.21578
18	0.22605	0.33168	0.18908	0.27743	0.19160	0.28113
19	0.26723	0.39210	0.22689	0.33292	0.22941	0.33662
20	0.30588	0.44882	0.26387	0.38717	0.26723	0.39210
21	0.30924	0.45375	0.26639	0.39087	0.26891	0.39457
22	0.27563	0.40443	0.23361	0.34278	0.23613	0.34648
23	0.21933	0.32182	0.18319	0.26880	0.18571	0.27250
24	0.16218	0.23797	0.13025	0.19112	0.13277	0.19482

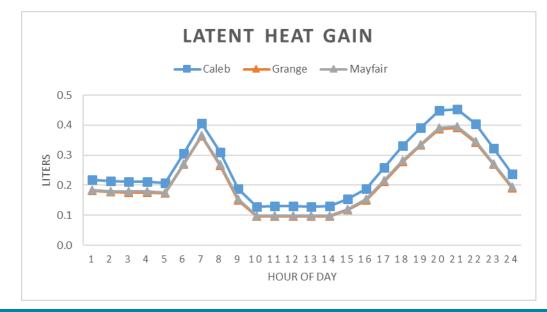


FIGURE 15. LATENT HEAT GAIN PROFILE

TABLE 12. INTERNAL HEAT GAIN MONTHLY MULTIPLIERS - USED FOR BOTH SENSIBLE AND LATENT HEAT GAINS

Month	MULTIPLIER
1	1.19
2	1.11
3	1.02
4	0.93
5	0.84
6	0.80
7	0.82
8	0.88
9	0.98
10	1.07
11	1.16
12	1.21

KEY MONITORED DATA POINTS

These monitored data points were used in the analysis.

- Dry bulb air temperature in each conditioned room
- Indoor relative humidity
- Outdoor temperature
- Outdoor humidity
- Supply and return plenum temperatures of the Reference HP system

- Electrical energy of each HVAC systems' individual components separately from each other and all other house electrical loads
- Electrical energy of electric resistance heaters and other interior electrical loads applied as sensible gains
- Liters of water added through the humidifier as latent gains
- Liters of condensate removal from each HVAC system
- Pressure difference from the house to outside

INSTRUMENTATION PLAN

The team installed monitoring and control systems in each home. These systems control the operation of the HVAC and internal gain systems and allow for switching between the house and reference HVAC systems. The team instrumented the research homes to provide hourly and minute-by-minute data. The monitoring equipment also controlled the humidifiers and heaters that simulated latent and sensible heat gain from simulated occupants.

SENSOR SPECIFICATIONS, LOCATIONS, AND CALIBRATION

The measurements made for this study are listed in the following three tables along with sensor specifications and sensor locations. The rooms listed in these tables can be identified in the floorplans: Figure 16 through Figure 19.

MEASUREMENT SENSOR Air temperature Shielded and aspirated thermocouple – Type T. Omega 24 ga TW SH STR	LOCATION(S) Mounting height 48 in., center of room Living room Kitchen Laundry Bedroom 1 Bedroom 2 Bedroom 3 Master bedroom Master bedroom Master bath Bonus room Garage Attic (mounted at midpoint between ceiling and roof) Thermostat 1 st floor Thermostat 2 nd floor Supply air, reference system (8) Return air, reference system

ET14PGE8761

PG&E's Emerging Technologies Program

Air temperature & relative humidity	Vaisala HMP60 Relative humidity • 0 to 40C • +/-3% RH (0 to 90% RH) • +/-5% RH (90 to 100% RH) Temperature: 10-30C, +/-0.5C	Mounting height 48 in. • Living room • Bonus room
Air temperature & relative humidity	Vaisala HMP110 Relative humidity • 0 to 40C • +/-1.5% RH (0 to 90% RH) • +/-2.5% RH (90 to 100% RH) Temperature: 0-40C, +/-0.2C	 Mounting height 48 in., center of room Dining room Laundry Bedroom 1 Bedroom 2 Bedroom 3 Master bedroom Master bath Outdoors
Differential air pressure	Setra 264 very low pressure differential transducer. 0-150F. +/- 1% full scale	Indoor at floor level to outdoorsAttic to outdoors
Electric energy	Watt Node – WNB-3D-240-P Accuracy: +/-0.5% (CT current 5% - 100% of rated current)	 50A CT: House total, not including old outdoor unit, reference outdoor unit, and reference air handler 15A CT: old outdoor unit & downstairs mini-split system 5A CT: downstairs mini-split head unit 30A CT: reference AC outdoor unit 15A CT: reference AC air handler 15A CT: upstairs mini-split outdoor unit 5A CT: upstairs mini-split head unit, landing 5A CT: upstairs mini-split head unit, master bedroom
Electric energy	Watt Node – WNB-3Y-208-P	• 5A CT: transfer fan
Water flow to humidifier	Water meter	• Kitchen
Air conditioner condensate	Tipping bucket	

ET14PGE8761

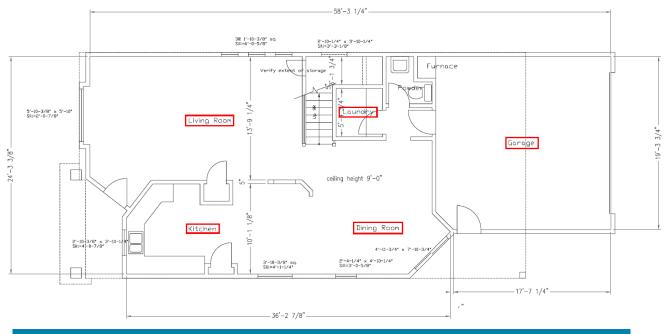
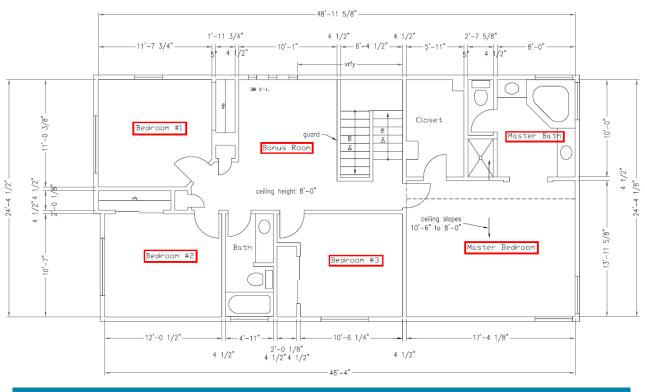



FIGURE 16. CALEB FLOOR PLAN – LOWER FLOOR

FIGURE 17. CALEB FLOOR PLAN – UPPER FLOOR

ET14PGE8761

TABLE 14. SENSOR SPECIFICATIONS AN	ID LOCATIONS - GRANGE	
Measurement	Sensor	Location(s)
Air temperature	Shielded and aspirated thermocouple – Type T. Omega 24 ga TW SH STR	Mounting height 48 in., center of room Living room Kitchen Bedroom 1 Bedroom 2 Bath Garage Attic (midpoint between ceiling and roof) Thermostat Supply air, reference system (8) Return air, reference system
Air Temperature & relative humidity	Vaisala HMP60 Relative humidity • 0 to 40C • +/-3% RH (0 to 90% RH) • +/-5% RH (90 to 100% RH) Temperature • 10-30C, +/-0.5C	Mounting height 48 in.Living roomReturn air, reference system
Differential air pressure	Setra 264 very low pressure differential transducer. 0-150F +/- 1% full scale	Indoor at floor level to outdoorsAttic to outdoors
Electric energy	Watt Node – WNB-3D-240-P Accuracy: +/-0.5% (CT current 5% - 100% of rated current)	 100A CT: House total, not including old outdoor unit, reference outdoor unit, and reference air handler 15A CT: old outdoor unit & mini-split system 5A CT: old air handler & mini- split head unit 30A CT: reference AC outdoor unit 15A CT: reference AC air handler
Electric energy	Watt Node - WNB-3Y-208-P	• 5A CT: transfer fan
Water flow to humidifier	Water meter	• Kitchen
Air conditioner condensate	Tipping bucket	

ET14PGE8761

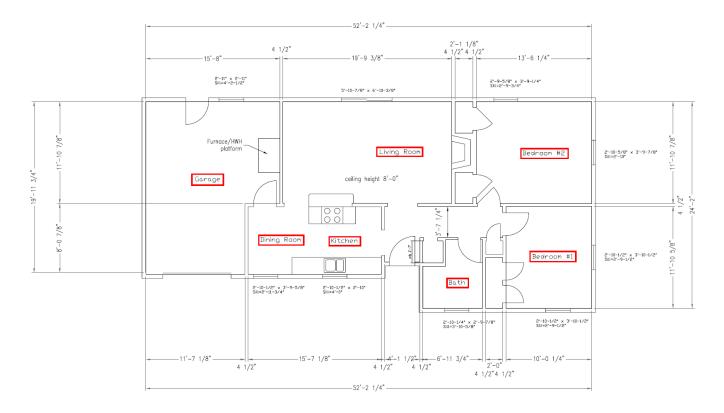
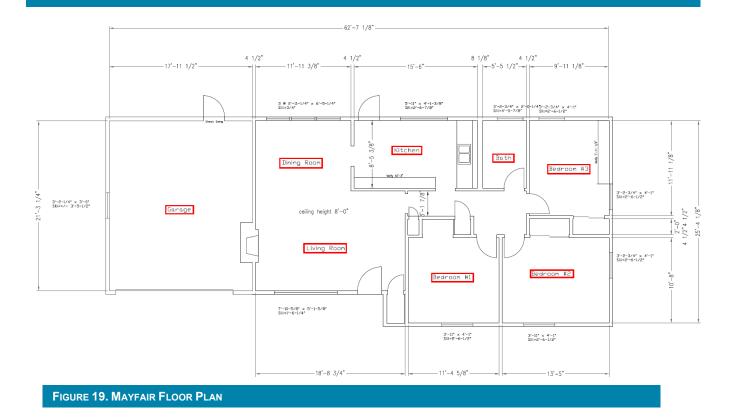


FIGURE 18. GRANGE FLOOR PLAN



ET14PGE8761

TABLE 15. SENSOR SPECIFICATIONS AND LOCATIONS - MAYFAIR						
Measurement	Sensor	Location(s)				
Air temperature	Shielded and aspirated thermocouple - Type T. Omega 24 ga TW SH STR	Mounting height 48 in., center of room Dining room Living room Kitchen Bedroom 1 Bedroom 2 Bedroom 3 Bath Garage Attic (midpoint between ceiling and roof) Thermostat Supply air, reference system (8) Return air, reference system				
Air Temperature & relative humidity	Vaisala HMP60 Relative humidity • 0 to 40C • +/-3% RH (0 to 90% RH) • +/-5% RH (90 to 100% RH) Temperature • 10-30C, +/-0.5C	Mounting height 48 in. • Living room • Crawlspace				
Differential air pressure	Setra 264 very low pressure differential transducer. 0-150F +/- 1% full scale	Indoor at floor level to outdoorsAttic to outdoors				
Electric energy	Watt Node – WNB-3D-240-P Accuracy: +/-0.5% (CT current 5% - 100% of rated current)	 100A CT: House total, not including old outdoor unit, reference outdoor unit, and reference air handler 15A CT: old outdoor unit & mini-split system 5A CT: old air handler & mini- split head unit 30A CT: reference AC outdoor unit 15A CT: reference AC air handler 				
Water flow to humidifier	Water meter	• Kitchen				
Air conditioner condensate	Tipping bucket					

ET14PGE8761

DATA LOGGER SPECIFICATIONS AND PROGRAMMING

Data were collected using the following set of Campbell Scientific equipment at each site.

- (1) CR1000 Measurement and Control System
- (2) AM16/32 multiplexer
- (2) SDM-SW8A 8-Channel Switch Closure Input Module
- (1) SDM-CD16AC 16-Channel AC/DC Relay Controller

The monitored data points were read every 20 seconds and the average (or sum as appropriate) was recorded every minute. Data were automatically downloaded by a remote server every 20 minutes.

The role of the system included equipment control as well as data collection. Outputs from the monitoring equipment controlled all the equipment. The system turned on and off the humidifier and heaters that simulated latent and sensible heat gain from typical occupancy. The system also controlled whole house fans, transfer fans, and electric space heaters. The system enables power to the VCHP system and the reference air conditioner, which are each then controlled by their stand-alone controls.

MONITORING EQUIPMENT INSTALLATION AND CALIBRATION

Much of the monitoring and control equipment was installed and commissioned in a previous phase of the CVRH project (Wilcox). Updates to the system were installed and commissioned prior to the 2015 cooling season.

ELECTRIC ENERGY

New revenue-grade electrical energy meters were installed prior to the 2015 cooling season. The accuracy was verified by comparing 1 week totals to the utility electricity meter, and were found to be within 1%.

AIR TEMPERATURE

Room air temperature thermocouples were verified using an ice bath to be accurate within 0.05°F.

RELATIVE HUMIDITY

Relative humidity sensors were checked by co-locating sensors for several hours and verifying that the sensors provided the same reading.

HUMIDIFIER WATER FLOW

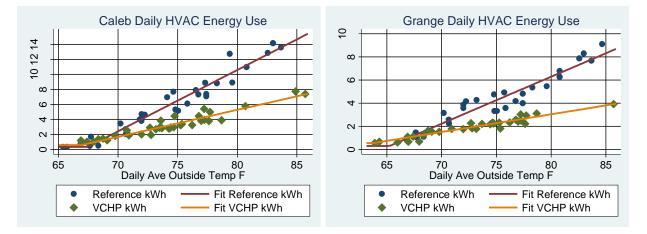
The water meter was verified using a graduated cylinder to be accurate within 1%.

RESULTS

COOLING PERFORMANCE WITH CONSTANT THERMOSTAT SETPOINT

Cooling season energy use analysis was performed for days the HVAC systems operated at a constant thermostat setpoint. reference system and VCHP system temperature control performance was sufficiently similar on constant setpoint days to develop energy use comparisons. Observations of performance during recovery from thermostat setup are discussed in a later section, but long recovery times for the VCHP systems resulted in indoor temperature differences too large for a meaningful energy use comparison to be made.

ANNUAL COOLING ENERGY


Energy consumption for cooling includes three components: 1) compressor and supply fan, 2) constant standby energy for HVAC electrical components, and 3) constant transfer fans for the ductless VCHP systems.

The estimate of annual cooling energy use is based on a linear regression model of daily HVAC system energy use against daily average outdoor temperature. Figure 20 shows the relationship between daily cooling energy and daily average outdoor

temperature for both the reference system and the VCHP system for each of the three houses.

Prior to performing the regressions, energy use resulting from constant power draws from HVAC system electrical components (standby power) and constantly operating transfer fans was subtracted from the daily energy use. The values for those constant power draws are shown in Table 16. The total daily HVAC energy use is calculated as the sum of the regression-predicted energy use plus energy use resulting from constant power draws. It was assumed that half of the energy consumption due to constant power draw (standby power and transfer fans) is attributed to the cooling season (4,380 hours) and the other half attributed to the heating season (4,380 hours).

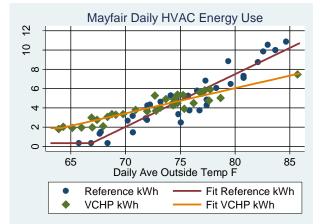


FIGURE 20. COOLING ENERGY LINEAR REGRESSIONS (PLOTTED VALUES ALSO INCLUDE CONSTANT POWER DRAW)

TABLE 16. CONSTANT POWER DRAWS

ET14PGE8761

Site	System	Constant Power: Combined Indoor & Outdoor Units (watts)	Transfer Fans (watts)
Caleb	Reference system	14	
	VCHP	14	10
Grange	Reference system	10	
	VCHP	14	9
Mayfair	Reference system	14	
	VCHP	79*	
* May fair as a start	a survey for the MCUD eveters in a	ludes several above the second	a a na a suma h s fa na ma su a n

* Mayfair constant power for the VCHP system includes constantly-operating indoor supply fan power.

Annual cooling energy use was calculated as:

$$kWh_{COOL} = \sum_{i=1}^{365} (Max(0, T_i \times E_T + C1) + \frac{C2 + C_{TF}}{2})$$

Where:

- T_i = Daily average outdoor temperature (°F) for day i, for each of 365 days in a year
- E_T = Linear regression daily energy use (kWh) slope against daily average outdoor temperature (°F)
- C1 = Linear regression constant
- C2 = Heat pump daily energy use (kWh) due to constant power draws, half of which is attributed to cooling season
- C_{TF} = Transfer fan daily energy use (kWh), half of which is attributed to cooling season

Coefficients for this equation are listed in Table 17.

TABLE 17. COOLING ENERGY REGRESSION COEFFICIENTS							
SITE	SYSTEM	Ε _T	C1	R ²	C2	C _{TF}	
Caleb	Reference HP	0.817	0.817	0.94	0.33	-	
	VCHP	0.360	0.360	0.90	0.33	0.24	
Grange	Reference HP	0.406	0.406	0.90	0.30	-	
	VCHP	0.154	0.154	0.88	0.34	0.21	
Mayfair	Reference HP	0.547	0.547	0.86	0.33	-	
	VCHP	0.261	0.261	0.82	1.90	-	

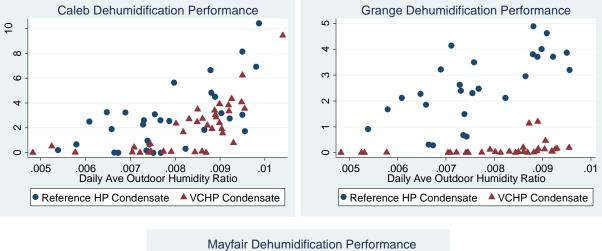
The linear regression results were applied to the Title 24 weather file for Stockton to develop annual cooling energy use estimates. The results are shown in Table 18.

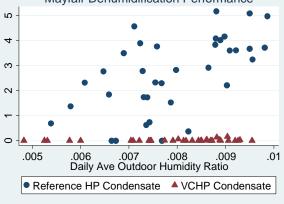
These results assume equivalent Reference HP and VCHP system performance with respect to temperature and humidity control. However, the monitored data showed

significant differences in temperature and humidity control between the reference systems and the VCHP systems. A discussion of observed differences and estimated energy impacts follows.

TABLE 18. ANNUAL COOLING ENERGY PROJECTIONS (UNADJUSTED FOR INDOOR CONDITIONS)						
Site	System	AC UNITS (KWH/YR)	Transfer Fan(s) (KWH/yr)	Total, Unadjusted (kWh/yr)		
Caleb	Reference HP	807	-	807		
	VCHP	413	44	457		
Grange	Reference HP	547	-	547		
	VCHP	281	39	320		
Mayfair	Reference HP	600	-	600		
	VCHP	707	-	707		

The annual cooling energy use levels monitored in this study are not necessarily representative of the average California home. These houses received substantial building shell upgrades during a prior research project, and cooling loads may be lower than the average existing house of similar vintage. Dwellings complying with the 2016 version of Title 24 will likely have loads that are even lower that the CVRH houses. Relative energy performance of the VCHP vs. Reference HP systems can be expected to scale with cooling load.


DEHUMIDIFICATION PERFORMANCE

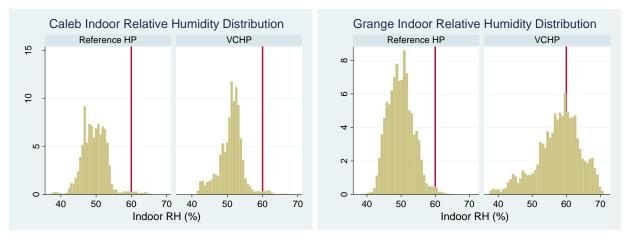

The VCHP systems provided significantly less dehumidification than the reference systems at the Grange and Mayfair houses. The Caleb VCHP system also provided less dehumidification, but the difference was smaller than at the other two houses. Figure 21 shows the daily volume of moisture removed from the air, measured as condensate from the cooling coils, plotted against daily average outdoor air humidity ratio. These plots show that the amount of moisture removed by the reference systems increases as moisture content of the outdoor air increases. The plots also show very little moisture removal by the VCHP systems at Grange and Mayfair. The VCHP system at Caleb does provide some dehumidification, but the volume is less than for the reference system under similar conditions.

ET14PGE8761

PG&E's Emerging Technologies Program

Reduced cooling system dehumidification is only a problem if indoor humidity becomes too high. It is generally accepted within the HVAC industry that indoor relative humidity should be maintained below 60% in residential buildings to provide occupant comfort and reduce the potential for condensation and mold growth. The monitored data show indoor relative humidity exceeding 60% a significant fraction of the time at the Grange and Mayfair houses. The reference systems at all three houses, and the VCHP system at the Caleb house maintained indoor humidity at acceptable levels.

Indoor relative humidity control characteristics for each system are shown in Table 19 and Figure 22. The values shown represent only the last day of the flip/flop control cycle, allowing for any impacts from the first recovery day to be isolated by a full day of constant setpoint operation. Dehumidification differences between the systems caused indoor humidity levels to trend upward while the VCHP system was running, and downward while the reference system was running. The last day of the control cycle most closely approximates the humidity levels that each system would maintain over long-term operation. The values shown in Table 19 and Figure 22 are likely a conservative representation of indoor humidity differences since humidity levels may not be fully stabilized after 3 days.



Pacific Gas and Electric Company®

TABLE 19 INDOOR HUMIDITY CONTROL CHARACTERISTICS

ET14PGE8761

TABLE 13. INDOOR I							
Site	System	MEAN INDOOR RH ON LAST DAY OF CYCLE	% of Time Above 60% RH on Last Day of Cycle				
Caleb	Reference HP	50%	2%				
	VCHP	51%	2%				
Grange	Reference HP	50%	1%				
	VCHP	58%	39%				
Mayfair	Reference HP	49%	1%				
	VCHP	56%	23%				

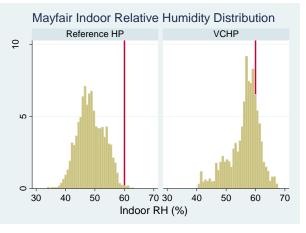
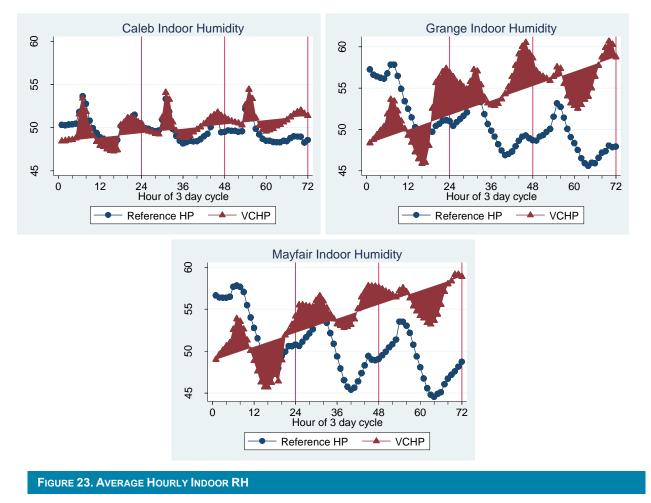


FIGURE 22. INDOOR RELATIVE HUMIDITY DISTRIBUTION ON LAST DAY OF CYCLE

Differences in dehumidification performance affect system energy use. VCHP energy use is reduced by not providing dehumidification, while reference system energy use is increased to provide extra dehumidification to remove the moisture that accumulated in the house while the VCHP was active. These trends are apparent in Figure 23, which shows the average indoor humidity for each system in each hour of



Pacific Gas and Electric Company® the three-day cycle. At the Grange and Mayfair houses, humidity increases while the VCHP system is active and decreases while the Reference HP is active. At the Caleb house the difference between systems is much smaller. Figure 23 shows relative humidity still increases somewhat in the Caleb house while the VCHP system is running, but the rate of increase is much smaller than in the other two houses.

There may be multiple factors involved in the observed differences in dehumidification performance. A likely significant factor is the relationship between compressor speed and indoor fan speed. The Grange unit operated at a near constant indoor fan speed regardless of compressor speed. The Mayfair unit was locked on high fan speed at all times. Both units ran long compressor cycles at low speeds the majority of the time, regardless of how far the indoor temperature was from the setpoint. This results in indoor airflow that is high relative to cooling capacity delivered to the indoor coil by the compressor, which reduces latent capacity. The potential for dehumidification by the Mayfair unit was further reduced by the constantly operating fan, which causes any water that did condense in the indoor unit to evaporate between compressor cycles. Stockton's hot dry climate needs less latent cooling than for example Houston or Atlanta, but some latent cooling is still needed.

Many VCHP systems can be configured to operate in various control modes, some of which are intended to influence dehumidification performance. The manufacturers do not currently publish detailed performance data specifying the design performance in each mode, so the degree of influence on dehumidification or other operating characteristics is unknown. It is possible that system designers and installing technicians could select more optimal control modes for the application if detailed performance information were available. The various control modes are often implemented as user selectable options through the thermostat or remote control. The reliability of occupant intervention as a humidity control strategy is not within the scope of this project's experimental design, but the operation manuals for the tested equipment were observed to be sufficiently difficult for the research team to interpret and understand that it appears unlikely the average California homeowner would be capable of making appropriate ad hoc controls adjustments in response to environmental conditions.

The fundamental performance comparison investigated by the project is of relative AHRI ratings that represent total (sensible + latent) capacity and efficiency. It is therefore necessary to estimate the energy implications of the monitored difference in latent capacity to develop performance-normalized energy use estimates for comparison to the SEER ratings. The estimated energy impacts of monitored

differences in latent capacity were developed through the following process:

- Average latent capacity of each system was characterized by linear regression of the monitored hourly liters of condensate removal against monitored outdoor temperature and outdoor humidity ratio.
- 2) The difference between reference system and VCHP average latent capacity was calculated for each hour in the monitored data.
- 3) The manufacturers' published expanded performance tables were used to estimate reference system energy use to provide the difference in latent capacity at the monitored temperatures for each hour.
- 4) Results were summed into daily energy totals (including the latent capacity adjustments) and projected to the Title 24 weather file for Stockton by linear regression against monitored daily average outdoor temperature and humidity ratio.

5) Annual results were summed, excluding days with no projected air conditioner energy use. The results are listed in Table 20, and adjusted cooling energy results are described in the section below titled Performance Normalized Annual Cooling Energy.

TABLE 20. LATENT CAPACITY DIFFERENCE ESTIMATED ENERGY IMPACT

Site	ESTIMATED IMPACT OF LATENT CAPACITY DIFFERENCE, ANNUAL KWH	% OF REFERENCE SYSTEM ANNUAL ENERGY USE
Caleb	28	3.4%
Grange	68	12.4%
Mayfair	72	12.0%

COOLING SEASON INDOOR TEMPERATURE CONTROL

ACCA Manual RS (ACCA 2015) guidelines recommend that indoor temperatures be maintained within 3°F of the thermostat setpoint during cooling season, with no more than 6°F room-to-room temperature variation. Ductless systems face an inherent challenge in meeting these criteria due to the lack of conditioned air distribution to each room of the house. The study applied an optimistic test scenario with regard to ductless system thermal comfort. The doors to all rooms were left open at all times. Transfer fans delivering air to rooms not directly served by an indoor head were operated constantly on the days when the ductless systems were active.

Differences in ducted vs. ductless system temperature control performance were observed, particularly at Caleb, the largest house. Table 21 shows the percentage of one-minute data points meeting the ACCA Manual RS criteria for each system. Average temperatures in each room relative to the thermostat setpoint are shown in Figure 24 through Figure 26. These plots show the temperature difference data in two ways: 1) as a function of outdoor temperature, and 2) as a 24-hour time series. Note that in the time-series data it can be seen that the reference systems in each house did not run during the early morning hours due to the absence of a cooling load, while the VCHP systems would sometimes run through the night at low output.

Site	System	% of Time with Room Temperatures within 3 °F of Setpoint	% of Time with Less Than 6 °F Room-to-Room Temperature Difference
Caleb	Reference HP	71%	100%
	VCHP	52%	85%
Grange	Reference HP	94%	100%
	VCHP	90%	100%
Mayfair	Reference HP	75%	100%
	VCHP	97%	100%

TABLE 21. COOLING TEMPERATURE CONTROL PERFORMANCE RELATIVE TO ACCA MANUAL RS

The data represented in Table 21 and Figure 24 through Figure 26 were filtered to only include minute data where:

- The whole house fan did not operate during the hour or during the prior hour. This is to eliminate periods with low indoor temperatures due to whole house fan cooling.
- 2) Indoor temperature was below the setpoint due to mild conditions.

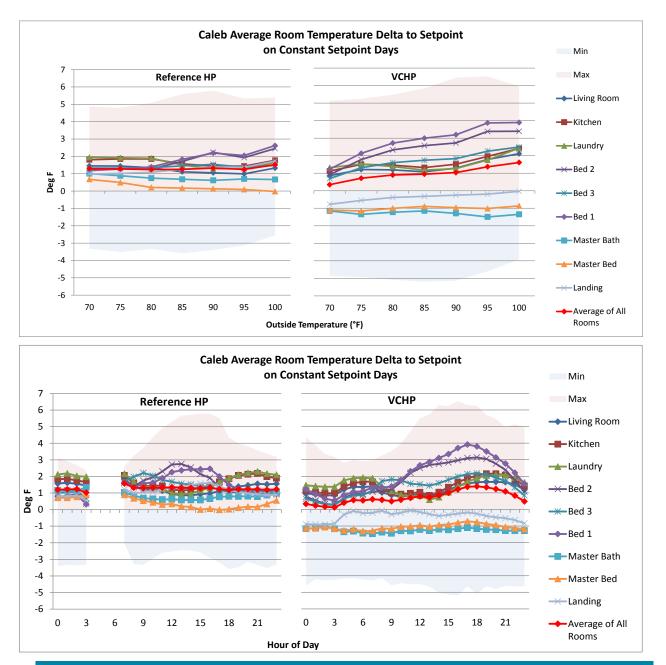


FIGURE 24. CALEB ROOM TEMPERATURES DURING CONSTANT SETPOINT COOLING

Grange Average Room Temperature Delta to Setpoint on Constant Setpoint Days 7 **Reference HP** VCHP Min 6 5 Max 4 ----Living Room 3 2 -E-Kitchen 1 0 0 Bed 2 -1 -2 -3 Average of All -4 Rooms -5 -6 65 70 75 80 85 90 95 100 105 65 70 75 80 85 90 95 100 105 Outside Temperature (°F)

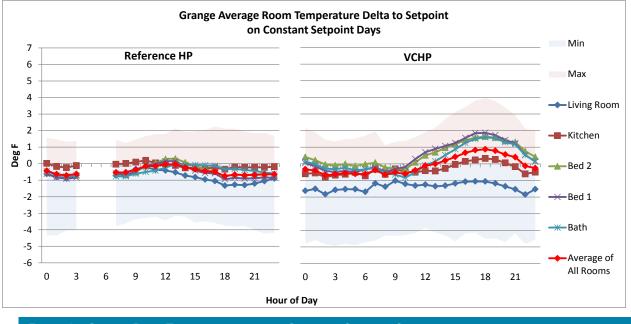


FIGURE 25. GRANGE ROOM TEMPERATURES DURING CONSTANT SETPOINT COOLING

ET14PGE8761

Mayfair Average Room Temperature Delta to Setpoint on Constant Setpoint Days 7 **Reference HP** VCHP 6 Min 5 4 Max 3 ----Living 2 -----Kitchen Deg F 1 0 ------Bath -1 → Bed 3 -2 -----Bed 2 -3 -4 Bed 1 -5 Average of All -6 Rooms 70 75 105 95 100 105 80 85 90 95 100 60 65 70 75 80 85 90 Outside Temperature (°F)

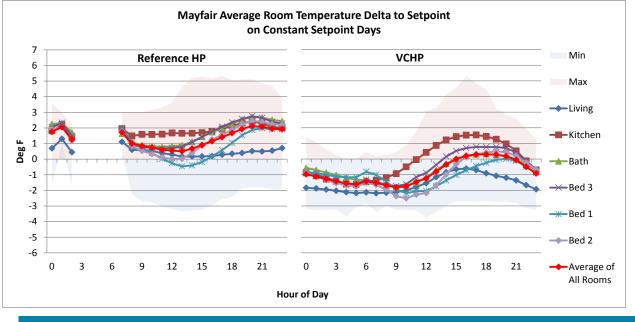


FIGURE 26. MAYFAIR ROOM TEMPERATURES DURING CONSTANT SETPOINT COOLING

The ductless VCHP systems at the Caleb and Grange houses provided less consistent room temperatures than the ducted Reference HP systems. The Grange VCHP unit was able to maintain room-to-room differences within the 6°F Manual RS guidelines, but the difference in room-to-room temperature performance is clearly visible in Figure 25. At both houses, room-to-room temperature differences increased with outdoor temperature, and were largest in the afternoon and evening hours.

The VCHP system at the small Grange house was able to meet 3°F Manual RS guidelines for room-to-setpoint temperature 90% of the time, while the VCHP system at the larger Caleb house experienced rooms more than 3°F from setpoint

Pacific Gas and Electric Company®

ET14PGE8761

nearly half of the time. The large Caleb house was also a challenge for the single zone Reference HP system, which met Manual RS guidelines 71% of the time. It is common to find automatic damper zoning implemented to address this comport problem.

The ducted VCHP system at Mayfair performed similarly to the ducted Reference HP system with respect to room-to-room temperature control. The VCHP system maintained average house temperature 1.8 °F lower than the Reference HP system. There are at least three contributing factors to the average temperature difference:

- 1) The VCHP system operated the indoor fan on high speed all of the time, so air was constantly circulated around the house.
- The VCHP system controls tended to cool the house to below setpoint at lower outdoor temperatures.
- 3) The Reference HP system ran shorter cycles during which house temperatures were quickly pulled down, followed by a longer period of temperature drift at warmer temperatures before the living room, where the thermostatic control is located, reached the top of the deadband. The living room was maintained within the 2 °F deadband of setpoint specified for the thermostatic controls, but other rooms were warmer.

As a result of these factors, the Mayfair Reference HP system maintained temperatures within Manual RS guidelines 75% of the time compared to 97% for the ducted VCHP system with constantly operating fan.

The energy impact associated with the average house temperature difference at Mayfair was estimated by performing the linear regression of VCHP daily energy use against daily outdoor temperature, with outdoor temperature offset by +1.8 °F to represent outdoor-indoor temperature differential equivalent to the conditions experience by the Reference HP. The resulting estimate indicates that at average house indoor temperatures equivalent to the Reference HP, the Mayfair VCHP annual cooling energy use would be reduced by 69 kWh (10%).

Average indoor temperatures were matched to within 0.5 °F at the other two houses, and no cooling energy adjustment is applied in those cases.

PERFORMANCE NORMALIZED ANNUAL COOLING ENERGY

Annual cooling energy estimates are shown in Table 22. Normalized values reflect the estimated energy impact of latent capacity differences and the energy impact of difference in average house temperature at Mayfair. Given the negative savings for Mayfair, additional analysis is done to assess the impact of the constant indoor fan operation, and an estimate of what performance would have with intermittent fan operation is presented later in this report.

TABLE 22 PERFORMANCE NORMALIZED ANNUAL COOLING ENERGY

TABLE 22. PERFORMANCE NORMALIZED ANNUAL GOOLING ENERGY							
Site	System	Annual Cooling Energy, Unadjusted (KWH)	Latent Capacity Normalization (KWh)	Indoor Temperature Normalization (KWh)	Annual Cooling energy, Normalized (KWH)		
Caleb	Reference HP	807	-28	-	780		
	VCHP	457	-	-	457		
Grange	Reference HP	547	-68	-	479		
	VCHP	320	-	-	320		
Mayfair	Reference HP	600	-72	-	528		
	VCHP	707	-	-69	638		

Table 23 shows percent cooling energy savings for the VCHP system compared to the reference systems. The expected percent savings are predicted based on the ratio of SEER ratings between the VCHP and reference systems. While SEER is not proven to be an accurate predictor of actual performance, it is the DOE and AHRI certified performance rating for these residential air conditioning systems and appears on the yellow and black label. Uncertainties in basing energy performance estimates on the SEER rating include:

- The SEER test conditions and calculation assumptions are not representative of the California climate.
- The SEER test conditions are not representative of any US climate with regard to humidity. The AHRI D test for cycling performance is conducted at 82 °F outdoor temperature, 80 °F indoor temperature, and less than 22% indoor relative humidity.
- The SEER test methods originated as tests for single speed equipment, and are not proven to produce reliable results for VCHP systems. At present, the SEER test methods "lock" variable-speed equipment at fixed speeds, essentially forcing them to function as single speed systems at each test point. VCHP system controls can be quite complex, are also quite diverse with different manufacturers favoring different control logic, and can significantly affect system performance in a variety of ways. Variable-speed systems operating under their intended control programming may perform better, or worse than indicated by the locked-speed SEER tests.

ET14PGE8761

TABLE 23.	TABLE 23. VCHP ANNUAL COOLING ENERGY SAVINGS							
Site	System	SEER	SEER PREDICTED COOLING ENERGY SAVINGS	Monitored Savings, Unadjusted	Performance Normalized Savings**			
Caleb	Reference HP	14						
	VCHP	20.9*	33%	43%	41%			
Grange	Reference HP	14						
	VCHP	25.5	45%	41%	33%			
Mayfair	Reference HP	14						
	VCHP	16	13%	-18%	-21%			

*CAPACITY WEIGHTED AVERAGE OF THE TWO VCHP SYSTEMS AT CALEB

** SAVINGS NORMALIZED FOR LOWER LATENT COOLING AT CALEB AND GRANGE AND FOR FAN OPERATION AT MAYFAIR

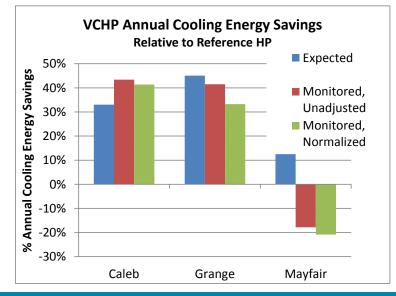


FIGURE 27. VCHP ANNUAL COOLING ENERGY SAVINGS RELATIVE TO THE REFERENCE SYSTEM

AIR DISTRIBUTION IMPACTS ON COOLING ENERGY PERFORMANCE

Mayfair VCHP energy use was significantly impacted by power draw from a constantly operating indoor air handler fan. The fan was adjusted by the manufacturer after initial installation to operate constantly on high speed in response to inability of the VCHP system to meet cooling load on hot days. Eliminating the constant fan power draw of 69W when the compressor is not running would reduce the Mayfair annual energy use by an estimated 166 kWh. On the other hand, intermittent operation would allow room-to-room temperature difference to rise and might adversely affect comfort performance.

Caleb and Grange VCHP energy use is optimistic due to very low energy use by the constantly operating transfer fans. The transfer fans installed in this study are not representative of the products that are currently available in the market for this

Pacific Gas and Electric Companv° application. Ducting into each room was located within the conditioned envelope. They are best-in-class exhaust fans, and their performance is described on page 17. The standard transfer fans that are currently commercially available are significantly less efficient. Based on manufacturer specifications, the standard transfer fan unit watt draw is approximately 50 watts each, 10 times the watt draw of the fans used in this study at the Caleb house. It is estimated that the commercially available products would increase transfer fan power from 9 watts to 50 watts at Grange and from 10 watts to 100 watts at Caleb. The corresponding increase in daily energy use (C_{TF}) is 2.16 kWh for Caleb and 0.99 kWh for Grange. This would increase annual energy use by 394 kWh for Caleb and 181 kWh for Grange. This result highlights the fact that it will advantageous for VCHP installations with transfer fans to use much better fans.

Figure 28 shows the estimated impact of using standard commercially available transfer fans at Caleb and Grange, and of allowing the indoor fan on the Mayfair unit to cycle with the compressor rather than operating constantly. In this scenario, the cooling energy savings for the ducted VCHP system at Mayfair approach the expected percentage while the Caleb and Grange energy savings are completely negated by the energy consumption of constantly operating transfer fans. It is worth noting that Mayfair comfort conditions would be impacted by eliminating the constant air handler fan operation.

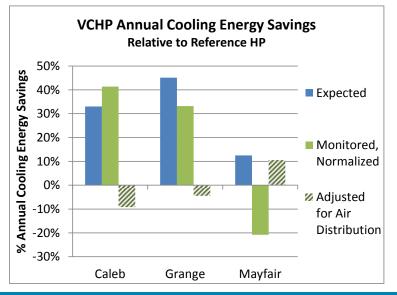


FIGURE 28. VCHP COOLING SAVINGS ADJUSTED FOR AIR DISTRIBUTION ENERGY IMPACTS

PEAK DEMAND

The maximum recorded hourly kWh during peak afternoon hours for each system are tabulated by hour and outdoor temperature bin in Table 24. For the hours shown, the VCHP systems produced demand reductions of 50% on average at the Caleb house, 64% at Grange, and 44% at Mayfair in the 95-100 °F temperature bin. These values do not account for humidity or temperature comfort differences or for the

potential for occupant interactions to increase demand in response to uncomfortable conditions.

TABLE 24. MAXIMUM HOURLY COOLING KWH AT CONSTANT SETPOINT										
			eference H 1um Hourl'		Μαχιμ	VCHP	ү к W н	Dem	and Reduc (kW)	TION
	TEMP BIN	85-90	90-95	95-100	85-90	90-95	95-100	85-90	90-95	95-100
SITE	Hour									
Caleb	14	0.75	0.90	1.23	0.33	0.33	0.56	0.43	0.57	0.66
	15	0.77	0.95	1.26	0.48	0.55	0.65	0.29	0.39	0.61
	16	0.87	1.22	1.35	0.52	0.54	0.69	0.35	0.68	0.66
	17	1.16	1.28	1.22	0.49	0.68	0.62	0.67	0.60	0.60
	18	1.08	1.22	-	0.55	0.62	-	0.52	0.60	-
Grange	14	0.44	0.52	0.72	0.19	0.21	0.23	0.25	0.31	0.49
	15	0.49	0.55	0.76	0.26	0.22	0.34	0.24	0.33	0.41
	16	0.56	0.61	0.78	0.28	0.22	0.34	0.28	0.39	0.44
	17	0.60	0.69	0.82	0.23	0.20	0.20	0.37	0.49	0.62
	18	0.66	0.74	0.80	0.18	0.21	-	0.48	0.53	-
Mayfair	14	0.66	0.93	1.16	0.30	0.42	0.49	0.36	0.51	0.67
	15	0.63	0.80	1.08	0.36	0.43	0.63	0.27	0.37	0.45
	16	0.62	0.83	1.09	0.41	0.47	0.64	0.21	0.36	0.45
	17	0.69	0.87	0.94	0.44	0.44	0.61	0.25	0.43	0.33
	18	0.65	0.79	0.73	0.42	0.45	-	0.23	0.34	-

VCHP system speed and power draw cannot be assumed to ramp linearly with outdoor temperature. Caution should be used in extrapolating demand to higher temperature bins.

SYSTEM OPERATING CHARACTERISTICS

The VCHP systems ran longer compressor cycles than the single-speed Reference HP systems. The Reference HP units ran short cycles that rarely exceeded 15 minutes. This is to be expected since the system was oversized based on standard industry practice. The Grange and Mayfair VCHP units operated continuously for the majority of their run time, often extending to several hours at less than peak capacity. The Caleb VCHP units cycled even on the hottest days. Figure 29 illustrates the difference in cycle times between the reference systems and the VCHP systems, using data from the constant setpoint days.

ET14PGE8761

PG&E's Emerging Technologies Program

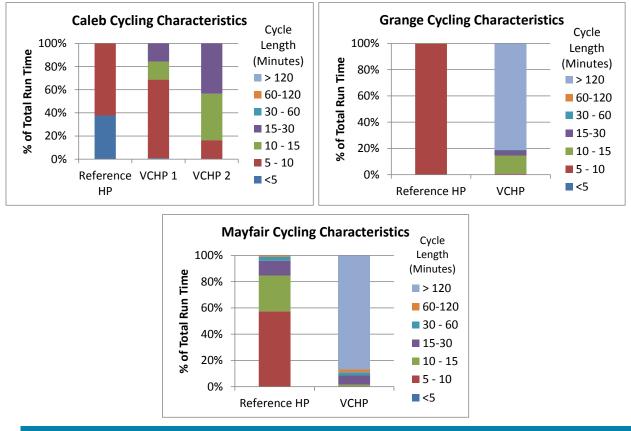


FIGURE 29. COOLING MODE CYCLING CHARACTERISTICS (CONSTANT SETPOINT DAYS??)

COOLING PERFORMANCE WITH THERMOSTAT SETBACK AND RECOVERY

INDOOR TEMPERATURE CONTROL

On the first day of each flip/flop cycle the HVAC systems were disabled and indoor temperatures were uncontrolled until 5PM. At 5PM the systems were turned on, with a 76 °F setpoint. Customers may operate their systems this way to save money. This produced a period of temperature recovery, where the single-speed systems were expected to operate continuously and the variable-speed systems were expected to operate at high speeds to pull the house temperature down to setpoint.

Table 25 shows the percentage of one-minute data points meeting the ACCA Manual RS criteria for each system. Average temperatures in each room relative to the thermostat setpoint are shown in Figure 30 through Figure 32. Appendix D includes additional graphs of measured temperature in each room on a single hot recovery day, with corresponding HVAC unit power draw. The data represented in Table 25 and Figure 30 through Figure 32 were filtered to only include minutes where:

1. The minute occurred after the system is turned on at 5:00PM.

Pacific Gas and Electric Company® 2. The heat pump operated during the hour.

Figure 30 through Figure 32 include only the days with daily high temperature of at least 90 °F, to illustrate performance with significant cooling loads during recovery.

TABLE 25. COOLING RECOVERY TEMPERATURE CONTROL RELATIVE TO MANUAL RS					
	Site	System	% of Time with Room Temperatures within 3 °F of Setpoint	% of Time with Less Than 6 °F Room-to-Room Temperature Difference	
	Caleb	Reference HP	62%	99%	
		VCHP	33%	69%	
	Grange	Reference HP	89%	100%	
All Days		VCHP	66%	94%	
	Mayfair	Reference HP	47%	100%	
		VCHP	74%	100%	
	Caleb	Reference HP	69%	99%	
Dave with		VCHP	15%	52%	
Days with Daily High	Grange	Reference HP	87%	100%	
Temperature ≥ 90 °F		VCHP	39%	86%	
2 90 F	Mayfair	Reference HP	48%	100%	
		VCHP	53%	100%	

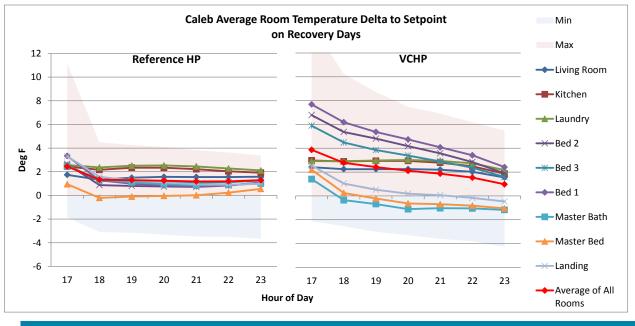
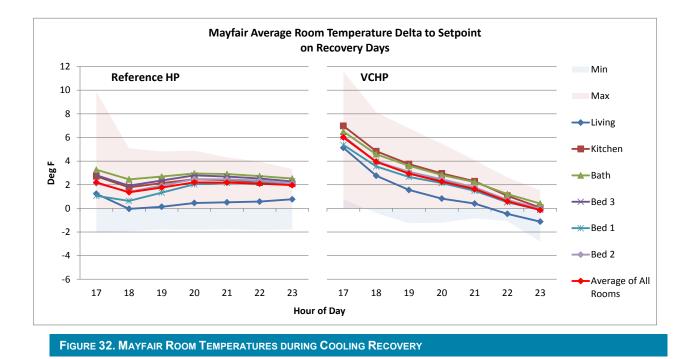



FIGURE 30. CALEB ROOM TEMPERATURES DURING COOLING RECOVERY

Grange Average Room Temperature Delta to Setpoint on Recovery Days 12 **Reference HP** VCHP Min 10 Max 8 Living Room 6 Kitchen 4 ц. Deg 📥 Bed 2 2 🗕 Bed 1 0 Ӿ Bath -2 Average of All -4 Rooms -6 17 18 19 20 21 22 23 17 18 19 20 21 22 23 Hour of Day

FIGURE 31. GRANGE ROOM TEMPERATURES DURING COOLING RECOVERY

The ductless VCHP systems at Caleb and Grange performed substantially worse than the ducted Reference HP systems relative to the Manual RS guidelines.

The Reference HP system at the Mayfair house struggled to keep all rooms within 3°F of setpoint due to the same factors discussed for the constant setpoint days, which were exacerbated by thermal mass of the house during recovery. As on the constant

setpoint days, the Mayfair Reference HP system was able to keep the living room (where thermostatic control is located) near setpoint, but other rooms were warmer.

The VCHP systems were not able to pull house temperatures down to setpoint as quickly as the Reference HP systems, particularly on the hottest days (see Appendix D). There were multiple contributing factors, including:

- Even with the doors open and transfer fans running constantly, the rooms that were not directly served by a ductless indoor head experienced long recovery times.
- VCHP control logic caused the units to deliver less than maximum capacity during recovery at two houses. See plots of HVAC unit power in Appendix D.
 - The Caleb VCHP units ramped down to lower speeds and began cycling before setpoint was reached in the rooms with thermostatic control.
 - The Mayfair VCHP unit controls limited maximum capacity operation to one hour, causing the unit to ramp down to lower speeds before setpoint was reached.
- VCHP unit sizing was specified by the manufacturers. The VCHP units at Grange and Mayfair were sized smaller than the Reference HP units, and in the case of Mayfair the nominal capacity of the selected unit was lower than the peak cooling load based on Manual J calculations (see Table 7 and Table 8). The reference system at Grange is somewhat larger than necessary due the fact that the reference systems are not available with cooling capacity less than 18,000 Btu/hr.

COOLING ENERGY USE

House temperature differences during recovery from a thermostat setback were too great for a meaningful energy use comparison to be developed. In addition to affecting cooling loads, warmer house temperatures during VCHP recovery raise the potential for occupants to interact with the thermostat (i.e. lower the setpoint) in ways that increase energy use above the monitored values. This is particularly true for the two houses where VCHP controls caused the units to ramp down from maximum capacity before setpoint was reached.

Energy performance of each system with a constant thermostat setpoint, and with a thermostat setback and 5 PM recovery, are plotted in Figure 33 through Figure 35. Linear regression fits to the data are also shown to illustrate average trends. The following observations can be made regarding energy performance with the thermostat setback and recovery schedule, in comparison to a constant setpoint:

- Daily energy use of the Reference HP is reduced at all three houses
- Daily energy use of the VCHP is:
 - Reduced at Caleb
 - Slightly reduced at Grange
 - Increased at Mayfair. For this VCHP system, prolonged operation at higher and less efficient compressor speeds during Recovery

outweighed the energy saved by not running the system during the day.

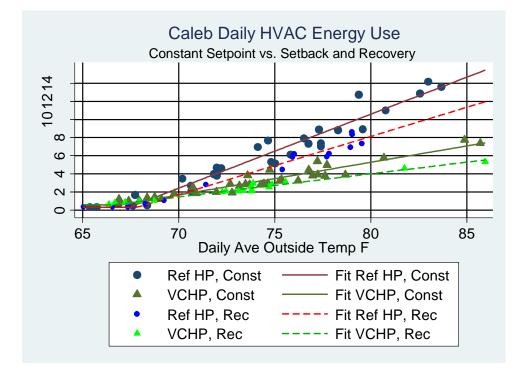


FIGURE 33. CALEB RECOVERY ENERGY PERFORMANCE

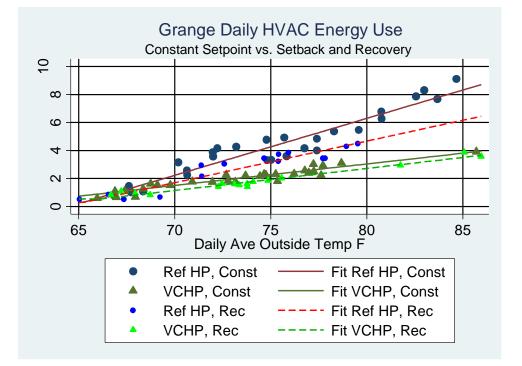


FIGURE 34. GRANGE RECOVERY ENERGY PERFORMANCE

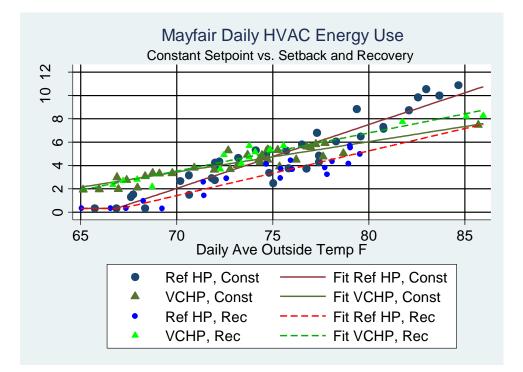


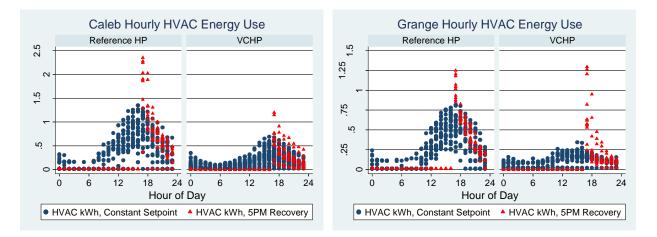
FIGURE 35. MAYFAIR RECOVERY ENERGY PERFORMANCE

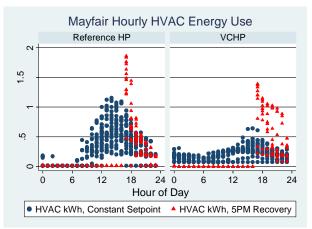
The regression coefficients corresponding to the Recovery regressions shown in Figure 33 through Figure 35 are shown in Table 26, presented in the same format as the Constant Setpoint regressions previously discussed. Caution should be used in applying these regressions to annual energy use estimates, as very large comfort differences were observed during recovery. Based on the temperature recovery times observed in this study, it is unlikely that human occupants would choose to operate VCHP systems on the setback and recovery schedule represented by these regressions.

TABLE 26. COOLING ENERGY REGRESSION COEFFICIENTS							
SITE	System	Ε _T	C1	R ²	C2	C _{TF}	
Caleb	Reference HP	0.643	-43.7	0.94	0.33		
	VCHP	0.256	-17.0	0.96	0.33	0.24	
Grange	Reference HP	0.297	-19.4	0.84	0.30		
	VCHP	0.157	-10.4	0.96	0.34	0.21	
Mayfair	Reference HP	0.383	-25.7	0.85	0.33		
	VCHP	0.327	-21.3	0.93	1.90		

PEAK DEMAND

The thermostat setback and recovery schedule increases peak demand significantly above the demand with a constant setpoint. Hourly energy use with each schedule is shown in Figure 36. Maximum hourly kWh by hour and temperature bin are tabulated in Table 27.


There is potential for occupant interactions with the VCHP controls to increase peak demand above the values recorded in this study:


- The Caleb VCHP unit ramped down from high speed and began cycling before reaching setpoint. Temperatures in rooms not directly served by an indoor head were well above setpoint. It is likely that occupants would lower the thermostat setpoint to cause the system to produce more cooling. This would cause the VCHP to ramp to a higher speed with higher power draw.
- The Grange VCHP met setpoint in the room served by the indoor head prior to ramping down from high speed, but rooms not directly served took longer to approach setpoint. It is possible that an occupant demanding comfort in an indirectly served room could adjust the thermostat and cause the system to remain at high speed.
- The Mayfair VCHP ramped down from maximum speed prior to reaching setpoint. It is likely that occupants would lower the thermostat setpoint to cause the system to produce more cooling. This would primarily affect the second hour after recovery because the system is already running at maximum speed during the first hour on peak days.

ET14PGE8761

PG&E's Emerging Technologies Program

FIGURE 36. HOURLY COOLING ENERGY USE PROFILES

TABLE 27. MAXIMUM HOURLY KWH DURING RECOVERY

		Reference HP Maximum Hourly kWh		VCHP Maximum Hourly kWh		Demand Reduction (KW)				
	TEMP BIN	85-90	90-95	95-100	85-90	90-95	95-100	85-90	90-95	95-100
SITE	Hour									
Caleb	17	2.25	2.35	-	0.77	0.63	1.20	1.48	1.73	-
	18	1.89	-	-	0.48	0.91	-	1.41	-	-
Grange	17	1.21	1.25	-	0.55	0.62	1.26	0.65	0.63	-
	18	0.83	-	-	0.22	0.66	-	0.61	-	-
Mayfair	17	1.76	1.86	-	1.16	1.27	1.37	0.60	0.59	-
	18	1.39	-	-	1.02	1.12	-	0.36	-	-

VCHP demand can change significantly as the compressor ramps to lower speed/capacity. This can be seen in hour 17 for the Caleb and Grange houses. Maximum recorded hourly kWh in the 95-100 °F bin is double the value for the 90-95°F bin. At Grange, the VCHP maximum hourly kWh (in the 95-100 °F bin)

Pacific Gas and Electric Company® approaches that of the Reference HP (in the 90-95 °F bin) even though the Reference HP is rated half a ton larger cooling capacity, with 17% lower EER and 45% lower SEER ratings than the VCHP unit.

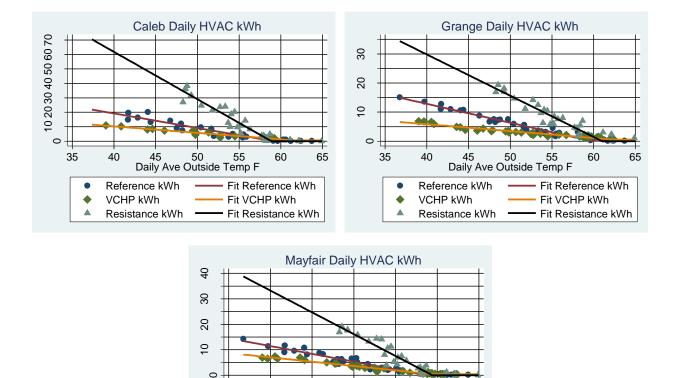
HEATING PERFORMANCE

ANNUAL HEATING ENERGY USE

Annual heating energy use was modeled by linear regression of daily HVAC system energy use against daily average outdoor temperature. Energy use resulting from constant power draws from HVAC system electrical components and constantly operating fans was subtracted from the daily energy use prior to performing the regressions. Total daily HVAC energy use is calculated as the sum of the regression predicted energy use plus energy use resulting from constant power draws. It was assumed that half of the constant power draw is attributed to heating season, and the other half attributed to cooling season.

The Caleb VCHP system experienced temperature control problems, described in more detail in the Indoor Temperature Control section of this report on page 40. Manufacturer representatives adjusted settings and ran diagnostic tests to investigate the control issues through much of the heating season. As a result, the data set available for analysis was limited to 10 days with known reliable indoor temperature control. Data was potentially usable for an additional 10 days that occurred during periods of control excursions but were not impacted by work at the house or settings modifications that affected energy use. The potentially usable days were screened for inclusion in the analysis using the following criteria:

- 1) Average daily temperature in each of the 3 rooms with VCHP thermostatic controls is no more than 2 °F below setpoint
- 2) No more than 1% of minutes in the day are more than 3 °F below setpoint in any of the 3 rooms with thermostatic control
- The temperature in any of the 3 rooms with thermostatic control does not exceed 5 °F above setpoint when the compressor is running


This process identified an additional 5 days with usable Caleb VCHP data. The resulting data set was compared to the Reference HP data set to ensure indoor temperatures were sufficiently similar for a heating energy use comparison to be made. The average daily indoor temperature for the Reference HP and VCHP data sets was found to differ by less than 0.5 °F.

Average house temperatures for the Reference HP and VCHP systems at the other two houses also differed by less than 0.5 $^{\circ}$ F.

ET14PGE8761

PG&E's Emerging Technologies Program

Annual heating energy use was calculated as:

FIGURE 37. HEATING ENERGY USE LINEAR REGRESSIONS

35

.

٠

40

45

Reference kWh

Resistance kWh

VCHP kWh

$$kWh_{HEAT} = \sum_{i=1}^{365} (Max(0, T_i \times E_T + C1) + \frac{C2 + C_{TF}}{2})$$

50

Daily Ave Outside Temp F

55

60

Fit Reference kWh

Fit Resistance kWh

Fit VCHP kWh

65

Where:

- T_i = Daily average outdoor temperature (°F) for day i, for each of 365 days in a year
- E_T = Linear regression daily energy use (kWh) slope against daily average outdoor temperature (°F)
- C1 = Linear regression constant
- C2 = Heat pump daily energy use (kWh) due to constant power draws, half of which is attributed to heating season
- C_{TF} = Transfer fan daily energy use (kWh), half of which is attributed to heating season

TABLE 28. HEATING ENERGY USE REGRESSION COEFFICIENTS							
SITE	System	Ε _T	C1	R ²	C2	C_{TF}	
Caleb	Reference HP	-1.070	63.0	0.91	0.18	-	
	VCHP	-0.441	27.2	0.89	0.33	0.24	
	Electric Resistance	-3.275	192.8	0.90	0.00	-	
Grange	Reference HP	-0.649	38.6	0.96	0.17	-	
	VCHP	-0.236	14.7	0.90	0.34	0.21	
	Electric Resistance	-1.417	86.5	0.87	0.00	-	
Mayfair	Reference HP	-0.613	35.8	0.93	0.17	-	
	VCHP	-0.340	20.2	0.95	0.40	-	
	Electric Resistance	-1.712	101.7	0.88	0.00	-	

The linear regression results were applied to the Title 24 weather file for Stockton to develop annual heating energy use estimates. The results are shown in Table 29. Also shown are the effective efficiencies of the VCHP and Reference HP systems relative to the electric resistance heaters. Electric resistance heat is a useful benchmark by which to compare the systems, but the relative efficiency values shouldn't be viewed as a true seasonal COP because the electric resistance heaters are controlled to maintain extremely constant temperatures throughout the house $(+/- 0.5 \,^\circ\text{F}$ in every room), while the temperatures will vary between rooms in the heat pump cases. Therefore, the heat pumps and the electric resistance heaters are not necessarily providing an identical amount of heat.

The effective efficiencies for the reference systems shown in Table 29 range from 2.5 to 3.2. These efficiencies are slightly better than predicted by their 8.2 HSPF values, which is equivalent to an efficiency of 2.4.

The effective efficiencies calculated for the VCHP systems are quite a bit better than their HSPF ratings. The calculated effective efficiencies range from 4.5 to 5.0, while the efficiency based on their ratings would be from 2.9 to 3.4. HSPF ratings are calculated for DOE climate region IV, which is colder than climate region III where Stockton is located. Stockton's heating design temperature is 30°F, while Kansas City, which is in climate region IV, has a heating design temperature of 6°F.

EFFECTIVE EFFICIENCY

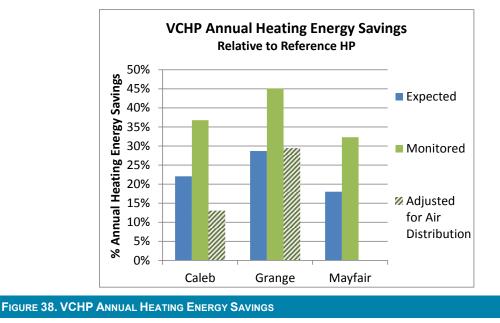
RELATIVE TO ELECTRIC RESISTANCE HEAT*

TABLE 29. ANNUAL MEATING ENERGY USE					
Site	System	Annual Heating Energy Use (KWh)			
Caleb	Reference HP	1662			

Caleb	Reference HP	1662	3.2
	VCHP	1051	5.0
	Electric Resistance	5277	
Grange	Reference HP	1152	2.5
	VCHP	632	4.5
	Electric Resistance	2846	
Mayfair	Reference HP	965	3.0
	VCHP	653	4.5
	Electric Resistance	2926	

* Effective efficiency = electric resistance kWh / heat pump kWh.

TABLE 30. VCHP ANNUAL HEATING ENERGY SAVINGS


Site	System	HSPF	HSPF PREDICTED HEATING ENERGY SAVINGS	Monitored Savings
Caleb	Reference HP	8.2		
	VCHP	10.5*	22%	37%
Grange	Reference HP	8.2		
	VCHP	11.5	29%	45%
Mayfair	Reference HP	8.2		
	VCHP	10	18%	32%

*Capacity weighted average of the two VCHP systems at Caleb

Annual heating energy savings relative to expectations based on the relative HSPF ratings are shown in Table 30 and Figure 38.

Also shown in Figure 38 are estimated annual heating savings if standard efficiency transfer fans had been used with the ductless VCHP systems at the Caleb and Grange houses. The estimated difference in transfer fan energy use is identical to the cooling season difference. It is estimated that the commercially available products would increase transfer fan daily energy use by 2.16 kWh for Caleb, and by 0.99 kWh for Grange. The manufacturer changed the Mayfair VCHP unit indoor fan setting from Constant to Auto for heating season, eliminating the constant fan power draw that occurred during cooling season. Therefore, no adjustment is necessary for air distribution for the ducted system at Mayfair during the heating season.

INDOOR TEMPERATURE CONTROL

ACCA Manual RS guidelines recommend that indoor temperatures be maintained within 2 °F of the thermostat setpoint during the heating season, with no more than 4 °F room-to-room temperature variation.

Differences in ducted vs. ductless system temperature control performance were observed at the Caleb and Grange houses. The Reference HP system also struggled to meet Manual RS guidelines at the two-story Caleb house. Table 31 shows the percentage of one-minute data points meeting the ACCA Manual RS criteria for each system. Average temperatures in each room relative to the thermostat setpoint are shown in Figure 39 through Figure 41. The constant setpoint data represented in Table 31 and Figure 39, 39, and 40 were filtered to include only minute data where:

- 1) The heat pump operated during the hour. This is to eliminate periods when indoor temperature exceeded the setpoint due to mild conditions.
- 2) For the Caleb house, only the days that were included in the heating energy use analysis were included. This excludes the days with known temperature control issues, system diagnostic testing, or modified control configurations.

The Caleb VCHP systems experienced temperature control issues through much of the heating season. The systems did not maintain temperatures near setpoint. Temperatures in the rooms served by the three indoor heads were sometimes maintained near setpoint, and sometime fell to as much as 6 °F below setpoint. The systems were mechanically capable of providing the needed heating capacity, but the controls systems caused them to operate at low speeds or cycle instead of ramping up to meet the heating load.

Attempts by the project team to remedy the Caleb temperature control problem by adjusting thermostat setpoints were unsuccessful. Thermostat adjustments produced unpredictable results. Adjustments sometimes produced no change in room

Pacific Gas and Electric Company® temperatures, and other times resulted in overshoot with room temperatures changing by more than double the change in setpoint.

Manufacturer representatives attempted adjustments several times and ran diagnostic tests on the Caleb VCHP system from late January through the end of heating season. The diagnostics indicated that the remote thermostats were the most likely cause of the control problems. The remote thermostats were removed, but it was not possible to confirm that the internal thermostats (located within the air handlers) provided better temperature control after the remedy, due to lack of cold weather in the spring of 2016.

TABLE 31. HEATING TEMPERATURE CONTROL PERFORMANCE RELATIVE TO MANUAL RS						
Site	System	% of Time with Room Temperatures within 2 °F of Setpoint	% of Time with Less Than 4 °F Room to Room Temperature Difference			
Caleb	Reference HP	54%	90%			
	VCHP	20%	67%			
Grange	Reference HP	78%	99%			
	VCHP	32%	93%			
Mayfair	Reference HP	96%	100%			
	VCHP	95%	100%			

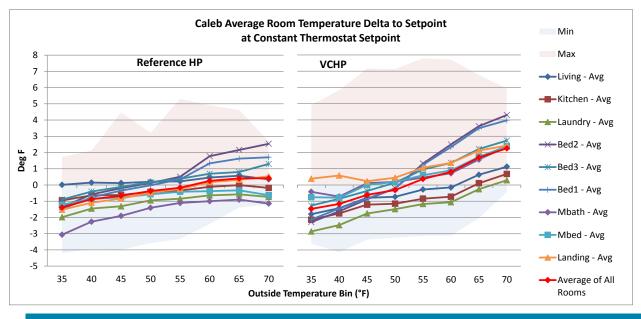


FIGURE 39. CALEB ROOM TEMPERATURES DURING CONSTANT SETPOINT HEATING

PG&E's Emerging Technologies Program

ET14PGE8761

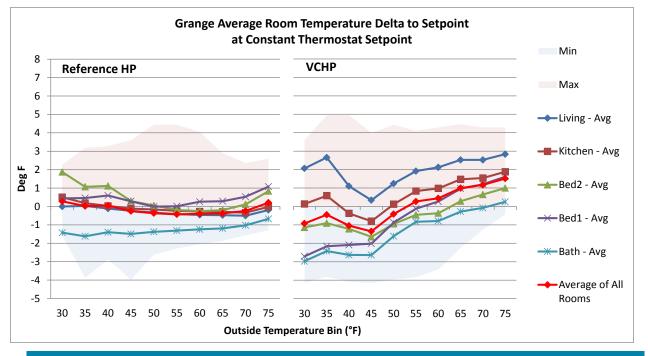


FIGURE 40. GRANGE ROOM TEMPERATURES DURING CONSTANT SETPOINT HEATING

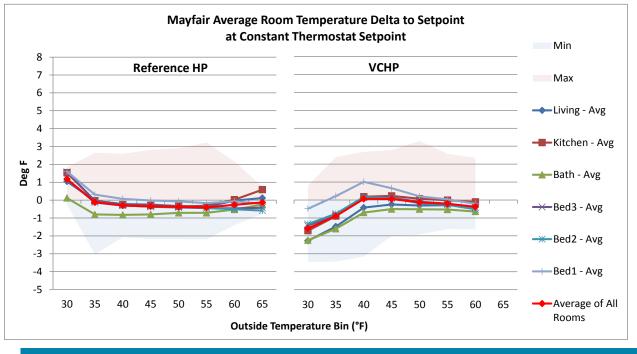
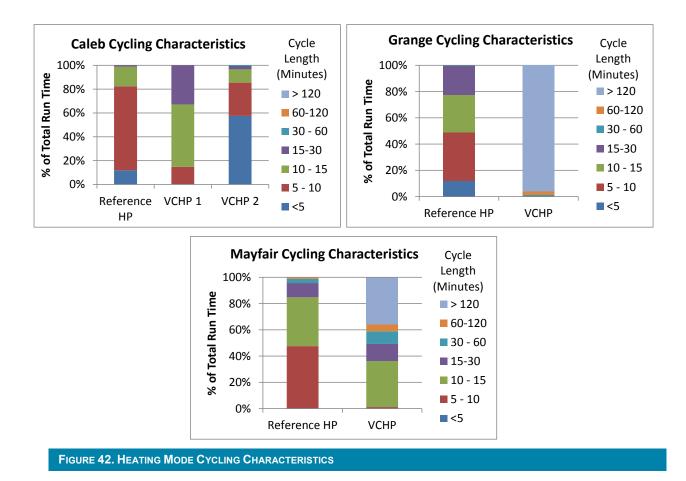


FIGURE 41. MAYFAIR ROOM TEMPERATURES DURING CONSTANT SETPOINT HEATING

Even with the data filtered to remove the days with extremely poor temperature control, the Caleb VCHP system was only able to maintain temperatures within 2 °F of setpoint 20% of the time. The Reference HP system also struggled to maintain



room temperatures near setpoint throughout the Caleb house, meeting the Manual RS guidelines about half of the time.

Figure 40 shows a "V" shape in the Grange VCHP room temperature profile. This is related to controls that caused the system to operate at two distinct speeds rather than modulating compressor speed to match the heating load. The system ran at a lower speed at mild outdoor temperatures, and began ramping to a higher speed in the 40 °F temperature bin. This behavior differs from compressor ramping observed in the cooling mode, and is a contributing factor to the Grange VCHP system failing to meet Manual RS guidelines 2/3 of the time.

The Mayfair VCHP system was unable to meet heating load on colder days, and indoor temperatures can be seen declining below the 40°F temperature bin in Figure 41. Defrost cycles that averaged 7 minutes in duration and occurred approximately every 40 minutes on the coldest days were a contributing factor. The manufacturer was notified of the defrost behavior and inability to meet heating load on cold days, but declined to make any adjustments to the system.

SYSTEM OPERATING CHARACTERISTICS

The Reference HP systems at all three houses ran short cycles that rarely exceeded 15 minutes.

The VCHP systems at Caleb also ran short cycles, particularly the 2nd floor multi-split unit which ran cycles of less than 5 minutes more than 50% of the time. The Grange and Mayfair VCHP units ran longer heating cycles, with the Grange unit operating continuously the majority of the time.

DEFROST

The Reference HP systems did not enter defrost mode because system capacity was high enough in each case that none of the systems ran continuously for a period long enough to trigger standard defrost modes.

The VCHP systems ran defrost cycles on colder days. Average measured defrost characteristics are shown in Table 32.

TABLE 32. VCHP DEFROST CHARACTERISTICS								
	CAL	CALEB*		NGE	MAYFAIR			
Average Daily Outside Temp. Bin °F	Average Minutes of Defrost/Day	Average # of Defrost Cycles/Day	Average Minutes of Defrost/Day	Average # of Defrost Cycles/Day	Average Minutes of Defrost/Day	Average # of Defrost Cycles/Day		
35-40	8.0	3.0	12.5	2.5	49.0	7.5		
40-45	0	0	6.2	1.2	21.5	2.5		
45-50	0	0	0	0	0	0		
50-55	0	0	0	0	1.0	0.3		
55-60	0	0	0	0	0	0		

* The amount of defrost at Caleb may be understated due to cycling behavior that made defrost difficult to identify in the measured data.

The Caleb 2nd floor VCHP system ran many very short compressor cycles and ramped the indoor head fans in ways that made it impossible to conclusively distinguish between heating and defrost on cycles shorter than two minutes. The above figures for Caleb include only cycles that were at least two minutes in length. There may be additional defrost mode cycles that were shorter than two minutes. Visual review of the data suggests that some of the short cycles may have been related to defrost. The first floor VCHP unit at Caleb did not enter defrost mode.

The greatest amount of defrost mode run time was observed on the Mayfair VCHP unit. As previously discussed, this unit entered defrost mode approximately every 40 minutes during periods of low outdoor temperature. After defrost the setpoint temperature was not met.

EVALUATIONS

The VCHP systems tested in this study produced mixed results with regard to both energy and comfort performance.

COOLING PERFORMANCE

Monitored VCHP system cooling energy performance ranged from better than expected based on relative SEER ratings at the Caleb house to substantially worse than expected at the Mayfair house. Energy performance is significantly influenced by air distribution equipment and configuration:

- Continuously operating room-to-room air transfer fans were installed with the ductless VCHP systems at the Caleb and Grange houses. The fans installed in this study were customized high efficiency bathroom exhaust fans and are not representative of standard commercially available transfer products. The estimated energy consumption of standard commercially available air transfer fans would increase the annual cooling energy use of the high efficiency ductless VCHP units at the Caleb and Grange houses to equal to or greater than that of the code minimum efficiency ducted Reference HP systems.
- The Mayfair ducted VCHP system was configured to run the indoor fan constantly on high speed. This constant fan operation was a significant contributor to the worse than expected energy performance of this system. If the fan had cycled with the compressor, annual cooling energy is projected to be near expectations based on relative SEER ratings, but indoor temperatures and RH would have been impacted.

HEATING PERFORMANCE

Monitored VCHP system heating energy performance was better than expected based on relative HSPF ratings at all three houses. These results are also influenced by supplemental air distribution systems used with the ductless VCHP systems. If standard commercially available air transfer fans had been installed, annual heating energy use is projected to be higher than predicted by HSPF ratings at the Caleb house, and near expectations at the Grange house.

PEAK ELECTRIC DEMAND IMPACT

The VCHP systems provided significant summer peak demand reductions ranging from 44% to 64% when the systems were operated at a constant thermostat setpoint. Demand reductions with a thermostat setback and recovery schedule are less certain due to room-to-room temperature differences and VCHP systems failing to meet setpoint before ramping to lower speeds. This performance would likely lead to occupant interventions that would increase demand above the values recorded in this study. For the one VCHP system that reached setpoint before ramping to lower speeds (Grange), there was little or no peak demand reduction during recovery.

IMPACT OF SETBACK CONTROLS

Thermostat setback and recovery schedules are not certain to save energy with VCHP systems. VCHP system efficiencies are generally lower at the highest compressor speeds, and high speed operation during recovery can outweigh the energy benefits of turning the air conditioner off or to a higher temperature setpoint during daytime hours.

The Mayfair VCHP system used more energy on setback and recovery days than on days with a constant thermostat setpoint. Controls programming from the manufacturer limited compressor operation at maximum speed to about one hour, but the system continued to run at the next highest speed for up to 4 more hours before reaching the thermostat setpoint. In comparison the reference cooling system would typically reach setpoint within one hour on hot days.

The ductless VCHP system at Caleb reached setpoint within about two hours on hot days in the room with the indoor unit (see Appendix D). Measured data show that the unit did not operate constantly at full capacity during this cool-down period. Rooms cooled indirectly via transfer fans took significantly longer to cool down.

The ductless VCHP system at Grange succeeded in reaching setpoint within about 45 minutes on a hot day, but indirectly-cooled rooms took many hours to reach within $3^{\circ}F$ of the setpoint.

COMFORT PERFORMANCE

Comfort issues were observed with regard to both temperature and humidity control.

- At two houses (Grange and Mayfair), the VCHP systems provided inadequate latent cooling to maintain indoor humidity below 60%. It is possible that control configurations could be adjusted to increase the latent capacity provided by these units, but delivering higher total capacity would increase energy use above the monitored values.
- Despite an optimistic experimental design with regard to air distribution to rooms not directly served by a ductless VCHP indoor head (doors open at all times, constantly operating low power air transfer fan), temperature comfort issues were observed.
 - The ductless VCHP systems at Caleb failed to meet ACCA Manual RS guidelines for room-setpoint and room-to-room temperature variation the majority of the time.
 - The Grange ductless VCHP system performed well relative to Manual RS in cooling season, but heating season temperature differences exceeded Manual RS guidelines the majority of the time.
 - At both Caleb and Grange, which are equipped with ductless VCHP systems, rooms not directly served by an indoor head experienced long recovery times following a thermostat setback. Recovery times were particularly long at the Caleb house, where the VCHP units ramped to lower speeds and began cycling before setpoint was reached.

CONTROLS

VCHP system controls are complex, often not well documented, often not fully accessible or understood by installers, and sometimes problematic.

- The Caleb VCHP systems failed to maintain temperatures near setpoint in the heating season. Diagnosing a potential cause of the problem required multiple rounds of controls adjustments and testing by a representative of the manufacturer. The diagnostic testing extended over two months, and the diagnosis couldn't be conclusively confirmed before the end of heating season.
- Early in the 2015 cooling monitoring, the Mayfair VCHP system failed to meet cooling loads on hot days because the control configuration prevented the system from ramping to higher speeds. The manufacturer addressed the problem by setting the indoor fan to run on maximum speed constantly. The system was then able to meet sensible cooling loads, but failed to meet latent loads and suffered a substantial energy penalty from the constantly running fan.
- The Grange and Mayfair VCHP systems provided inadequate dehumidification to maintain indoor relative humidity below 60%. At the conclusion of this study, the manufacturers indicated that control configurations could be adjusted to increase the latent capacity provided by these units.

The experimental design was optimistic with regard to control configurations. The manufacturers were allowed to specify the VCHP controls settings they believed would produce the best results in the monitored houses. It is unlikely that the typical HVAC contractor installing these systems is more knowledgeable than, or would select more optimal controls configurations than the equipment manufacturer. It would also be unrealistic to expect that the typical VCHP system installation in California will be monitored, and controls settings adjusted as needed based on the monitored data. The observed inability of VCHP systems to perform as needed without intervention to alter the controls configuration is reason for concern.

SYSTEM SIZING

VCHP system sizing is not fully understood, not well informed by the available performance information, influenced by controls logic and configuration, and potentially problematic. The research team provided the manufacturers with the full room-by-room load calculations in Appendix A. The VCHP manufacturers then specified system sizing for each house. Based on the results of this study, a representative of the manufacturer of the Mayfair VCHP system believes the system was undersized, despite having been provided with load calculation results. In the investigation of this concern, the team reviewed the data and found that the controls were driving the system at less than maximum capacity even as the temperature setpoint was not being met. As noted above in the discussion of setback controls, other VCHP systems also appeared to reduce output before setpoints were achieved. The control algorithms that govern system speed are defined in the proprietary firmware and are not user accessible or adjustable. Detailed performance information indicating system capabilities in the various control modes would improve the ability of system designers to select appropriate VCHP systems for the application. The performance information needs to reflect not only hardware capabilities, but also the influence of control algorithms in the firmware.

INSTALLER IMPACT

The VCHP systems evaluated in this study performed significantly better than those evaluated in the preceding year. The difference in results suggests that local contractors do not have adequate training and expertise.

- The 2015-16 units were specified by the manufacturers. The 2014-15 units were specified by local contractors who were authorized dealers of the brand installed.
- The 2015-16 units were installed by contractors selected by the manufacturers, with controls settings specified by the manufacturers. The 2014-15 units were installed and configured by local contractors who were authorized dealers of the brand installed. In one case, a unit in the 2014-15 study was found to have been installed with low refrigerant charge.

PERFORMANCE VERIFICATION METHOD OF TEST

Proven and publicly accessible methods of test to verify proper VCHP system installation and operation do not currently exist and are needed. The California Energy Commission has found that AC and HP systems need to be inspected and verified to be properly installed and working at rated efficiency levels. The CEC expects to implement verification protocols for VCHP systems. The units in this study were installed under manufacturer supervision and are therefore believed to be installed and operating as intended. These installations are not representative of those performed by the general population of HVAC contractors. The units in the 2014-15 study were installed by local contractors without direct supervision by the manufacturer, and one of the three systems was found to be significantly undercharged at the end of the study. For the reference systems, the CEC requires verification of charge, airflow, and indoor fan watts/cfm. For VCHP systems, the only current requirement is that the refrigerant charging be witnessed by a special energy efficiency inspector (a HERS rater). A key measure of forced air system performance is the heating or cooling output as determined by the airflow through the system and the difference in return air and supply temperatures. Airflow and representative supply air temperature measurements are both problematic for ductless VCHP systems.

RECOMMENDATIONS

Additional research is needed to develop a better understanding of comfort and energy performance of VCHP systems in California homes. Areas of need include:

- Further study is needed of the energy impacts associated with room-to-room air distribution. Of particular importance is the energy use of constantly operating fans.
 - Standard room-to-room air transfer fans have 5 to 10 times the watt draw of the units installed in this study. Additional evaluation of VCHP system energy use with standard transfer fans is needed to determine

energy impacts that may be expected in a standard ductless VCHP system installation.

- Short-ducted VCHP systems are potentially a better air distribution option but are also capable of contributing significant fan energy use to the VCHP system, particularly if configured to operate the fan constantly as was the case at the Mayfair house during cooling season. Additional study is needed to evaluate the energy performance of ducted VCHP systems in comparison to ductless units with air transfer fans.
- Further study of VCHP comfort issues is needed. In particular:
 - Evaluation of performance with interior doors closed. The optimistic test scenario applied in this study is not representative of real world use where bedroom doors are likely to be closed at times.
 - Evaluation of ductless systems with no transfer fans. Since transfer fan energy use is a concern, it would be useful to evaluate the ability of ductless VCHP systems to provide comfort without supplemental air distribution fans.
 - Evaluation of ducted VCHP systems in other houses. The Mayfair ducted VCHP unit performed well with respect to comfort on days with a constant thermostat setpoint. It would be useful to evaluate ducted installations in the other houses to compare differences in ducted vs. ductless system performance.
 - Assessment of controls modification options beyond thermostat adjustments. This will be most productive if OEMs choose to engage the research team in solving performance problems.
 - Assessment of field accessible controls that allow the installer to set up the system for the application. Of particular importance is humidity control and recovery from setback.
- Further study of efficiency rating test methods is needed. Energy performance of the systems evaluated in this study was not aligned with the standard efficiency ratings for heating and cooling. The test methods currently used to develop the SEER and HSPF ratings lock VCHP units at fixed compressor speeds, causing them to operate in ways that are not representative of field operation. Results are then applied to calculations that assume system behavior that does not align with actual controls operation. Since variable-speed components and control programs can vary substantially from system to system, test methods that simulate a range of real-world conditions and allow VCHP systems to function as designed should be developed. Lab testing of the same or similar systems operating under their own controls is needed so that field and lab results can be compared.
- Development of Title 24 Alternative Compliance Method (ACM) simulation protocol for VCHP systems including eligibility requirements that address required features.
- Development of best practices and field verified performance protocols.
- Development of generic control scenarios suitable for California climates which are set by installers with default settings which allow acceptable energy and comfort performance.
- Design recommendations for manufacturers

PG&E's Emerging Technologies Program

- Design systems so that air handlers and ducts fit in 12-inch hallway ceiling soffits.
- \circ Produce $\frac{1}{2}$, $\frac{3}{4}$, 1 and 1.5 ton units.
- \circ $\;$ Include a fault detection device that is difficult or impossible for occupants to ignore.
- Installation kit recommendations for manufacturers. Sell ducted mini-split systems with complete "installation kits" that include:
 - Comprehensive instructions to ensure proper installation
 - Guidance on creating an air barrier and fire stopping for the ceiling soffit
 - Oversized return air plenum that the air handler is mounted inside
 - \circ $\;$ Supply plenum with the correct number and size of duct openings for that unit
 - Oversized return air filter grille
 - Double-deflection supply grilles with very low static pressure loss
 - \circ $% \left(Appropriately sized straight supply boots for high sidewall air delivery in each room <math display="inline">% \left(Appropriately \right) \right)$
 - Fixed moisture removal rates for precise humidity control
 - Precise home temperature control
 - Simple occupant operating instructions
 - Sales literature/training for builders' sales staff and real estate agents
- Installer training
 - PG&E should provide basic training through the WE&T program on general VCHP installation practices, including topics like adjusting refrigerant charge for lineset length, making sure the flare fittings don't leak, and setting the indoor fan to auto.
 - Manufacturers should provide better training than they currently do, and programs installing VCHP systems should require proof that installers (the technician, not only the contractor) have been through the manufacturer training. These systems are complex, and there are differences between manufacturers. Therefore, training on specific equipment is important.

REFERENCES

- ACCA. 2015. *Manual RS Comfort, Air Quality, and Efficiency By Design*. Air Conditioning Contractors of America.
- CEC. 2013. Appendix F to 2013 Residential Alternative Calculation Method Reference Manual, "2013 Residential ACM Algorithms". California Energy Commission.
- Pacific Energy Center. 2006. *The Pacific Energy Center's Guide to California Climate Zones*. October 2006. <u>http://www.pge.com/includes/docs/pdfs/about/edusafety/training/pec/toolbox/arch/climate/california_climate_zones_01-16.pdf</u>
- Wilcox, Bruce A. and Proctor, John. *Central Valley Research Home Program Final Report*. California Energy Commission. [to be published]

APPENDIX A – MANUAL J LOAD CALCULATIONS

Date: March 15, 2015

Job:

Bv:

GRANGE LOAD CALCULATIONS

Load Short Form Entire House Wrightsoft Corp

131 Hartweil Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For: Grange Retrofit, 3622 Grange Ave 3622 Grange Ave, Stockton, CA

Design Information						
Htg Clg Infiltration						
Outside db (°F)	33	98	Method	Blower door		
Inside db (°È)	70	75	Shielding / stories	3 (partial) / 2		
Design TD (°F)	37	23	Pressure / AVF	50 Pa / 642 cfm		
Daily range	-	Н				
Inside humidity (%)	30	50				
Moisture difference (gr/lb)	11	-3				

HEATING EQUIPMENT

Make Generic Trade Model SEER 14.0, HSPF 8.1 AHRI ref

Efficiency Heating input Heating output Temperature rise Actual air flow Air flow factor Static pressure Space thermostat 8.2 HSPF 14898 Btuh @ 47°F 27 °F 499 cfm 0.039 cfm/Btuh 0 in H2O

COOLING EQUIPMENT

Make Generic Trade SEER 14.0, HSPF 8.1 Cond Coil AHRI ref 12.2 EER, 14 SEER Efficiency Sensible cooling 10480 Btuh 4492 Btuh Latent cooling Total cooling 14972 Btuh Actual air flow 499 cfm 0.054 cfm/Btuh Air flow factor Static pressure 0.40 in H2O Load sensible heat ratio 0.93

ROOM NAME	Area	Htg load	Clg load	Htg AVF	Clg AVF
	(ft²)	(Btuh)	(Btuh)	(cfm)	(cfm)
KITCHEN	138	2611	2747	102	148
BATH	52	1459	696	57	37
HALL	81	0	0	0	0
GREAT ROOM	251	2891	2745	113	148
BEDROOM 2	202	3065	1585	120	85
BEDROOM 1	153	2750	1512	107	81
Entire House d Other equip loads Equip. @ 1.03 RSM Latent cooling	878	12775 0	9285 0 9554 698	499	499
TOTALS	878	12775	10253	499	499

Bold/Italic values have been manually overridden

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

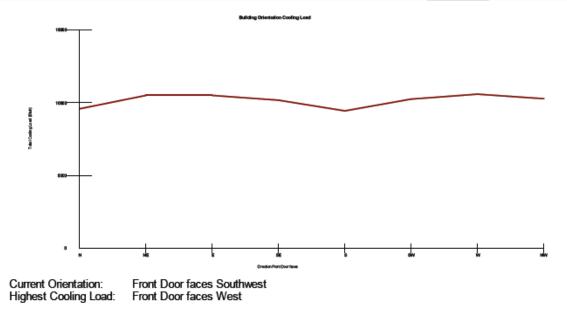
wrightsoft Right-Suite® Universal 2015 15.0.13 RSU00533

...Wrightsuite/Grange/GRANGE-CA-Retrott_DEG_Frup Calc - MJ8 Front Door faces: SW

Pacific Gas and Electric Company® 2015-Mar-24 14:39:50 Page 1

Loads for Multiple Orientations Entire House Wrightsoft Corp

Job: Date: March 15, 2015 By:


131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For: Grange Retrofit, 3622 Grange Ave 3622 Grange Ave, Stockton, CA

Design Conditions						
Location: Stockton Metropolitan A Elevation: 26 ft Latitude: 38°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	P, CA, US Heating 33 - 15.0	Cooling 98 32 (H) 69 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) Infiltration:	Heating 70 37 30 10.9	Cooling 75 23 50 -3.0	

Front Door	North	Northeast	East	Southeast	South	Southwest	West	Northwest
Sensible Load (Btuh)	8891	9804	9804	9474	8751	9554	9894	9588
Latent Load (Btuh)	698	698	698	698	698	698	698	698
Total Load (Btuh)	9589	10502	10502	10172	9450	10253	10593	10287
Heating AVF (cfm)	499	499	499	499	499	499	499	499
Cooling AVF (cfm)	499	499	499	499	499	499	499	499

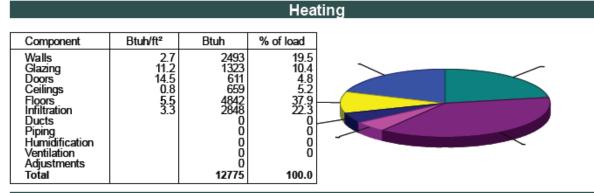
Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Wrightsoft" Right-Suite® Universal 2015 15.0.13 RSU00533

2015-Mar-24 14:39:50 Page 1

Pacific Gas and Electric Company®

Building Analysis Entire House Wrightsoft Corp


Job: Date: March 15, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

Grange Retrofit, 3622 Grange Ave 3622 Grange Ave, Stockton, CA For:

Design Conditions						
Location: Stockton Metropolitan AF Elevation: 26 ft Latitude: 38°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	P, CA, US Heating 33 - 15.0	Cooling 98 32 (H) 69 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative hurnidity (%) Moisture difference (gr/lb) Infiltration: Method Shielding / stories Pressure / AVF	Heating 70 37 30 10.9 Blower door 3 (partial) / 2 50 Pa / 642 cfm	Cooling 75 23 50 -3.0	

Component	Btuh/ft ²	Btuh	% of load	
Walls Glazing Doors Ceilings Floors Infiltration Ducts Ventilation Internal gains Blower Adjustments Total	1.3 22.1 11.2 1.0 1.4	1206 2617 468 920 0 1254 0 2820 0 2820 0 9 285	13.0 28.2 5.0 9.9 0 13.5 0 30.4 0 30.4 0	

Latent Cooling Load = 698 Btuh Overall U-value = 0.094 Btuh/ft²-°F

Data entries checked.

Hereit wrightsoft Right-Sulle® Universal 2015 15.0.13 RSU00533 2015-Mar-24 14:39:51 Page 1

Pacific Gas and Electric Company[®] For:

ET14PGE8761

Component Constructions Entire House Wrightsoft Corp

Job: Date: March 15, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoff.com

Project Information

Grange Retrofit, 3622 Grange Ave 3622 Grange Ave, Stockton, CA

Design Conditions						
Location: Stockton Metropolitan AF Elevation: 26 ft Latitude: 38°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	P, CA, US Heating 33 - 15.0	Cooling 98 32 (H) 69 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) Infiltration: Method Shielding / stories Pressure / AVF	Heating 70 37 30 10.9 Blower door 3 (partial) / 2 50 Pa / 642 cfn	Cooling 75 23 50 -3.0	

Construction descriptions	Or	Area 1ª	U-value Biuhite-F	lnsulR ft∹*F/Btuh	Htg HTM Bluhtte	Loss Buh	Clg HTM Btuh/ftª	Gain Bluh
Walls								
12B-5sw: Frm wall, wd ext, 1/2" wood shth, r-11 cav ins, 1/2" gypsum	ne	244	0.068	16.0	2.54	618	1.33	323
ooard int fnsh, r-5 ext bd ins, 2"x4" wood frm, 16" o.c. stud	se	186	0.068	16.0	2.54	472	1.33	247
	SW	262	0.068	16.0	2.54	665	1.33	348
	nw	44	0.068	16.0	2.54	112	1.33	58
	all	736	0.068	16.0	2.54	1867	1.33	976
Partitions								
Frm wall, stucco ext, r-13 cav ins, 1/2" gypsum board int fnsh, 2"x4" wood frm, 16" o.c. stud: Frm wall, stucco ext, r-13 cav ins, 1/2" gypsum board int fnsh, 2"x4" wood frm, 16" o.c. stud		179	0.094	13.0	3.50	626	1.28	230
Windows								
1 glazing, cir giz, mti no brk frm mat, 1/8" thk: 1 glazing, cir giz, mti no brk	ne	52	0.300	0	11.2	584	20.3	1061
irm mat, 1/8" thk; NFRC rated (SHGC=0.25); 50% outdoor insect	se	24	0.300	0	11.2	269	23.6	566
screen; 6.67 ft head ht	SW	42	0.300	0	11.2	470	23.6	990
	all	118	0.300	0	11.2	1323	22.1	2617
Doors								
11D0: Door, wd sc type	SW	21	0.390	0	14.5	305	11.2	234
	n	21	0.390	0	14.5	305	11.2	234
	all	42	0.390	0	14.5	611	11.2	468
Ceilings								
16B-50ad: Attic ceiling, asphalt shingles roof mat, r-50 ceil ins, 1/2"		453	0.020	50.0	0.75	338	1.04	472
gypsum board int fnsh		425	0.020	50.0	0.75	320	1.05	448
	all	878	0.020	50.0	0.75	659	1.05	920
Floors								
22A-tpm: Bg floor, heavy dry or light damp soil, on grade depth		110	1.180	0	44.0	4842	0	0

wrightsoft Right-Suite® Universal 2015 15.0.13 RSU00533

...Wrightsutle/Grange/GRANGE-CA-Retroft_DEG_F.rup Calc - MJ8 Front Door faces: SW

Pacific Gas and Electric Company[®]

77

2015-Mar-24 14:39:51 Page 1

Project Summary Entire House Wrightsoft Corp

Job. Date: March 15, 2015 By:

131 Harlwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For: Grange Retrofit, 3622 Grange Ave 3622 Grange Ave, Stockton, CA

Notes: Several assumptions had to be made in order to complete this model, due to incomplete data. Please reference the accompanying list of assumptions for details.

Design Information

Weather:

Stockton Metropolitan AP, CA, US Winter Design Conditions

	besign contaitions	
Outside db Inside db Design TD	33 70 37	°Ē

Heating Summary

Structure	12775	Btuh
Ducts	0	Btuh
Central vent (0 cfm)	0	Btuh
Humidification	0	Btuh
Piping	0	Btuh
Equipment load	12775	Btuh

Infiltration

Method Shielding / stories Pressure / AVF		Blower door 3 (partial) / 2 50 Pa / 642 cfm		
Area (ft²) Volume (ft³)	Heating 878 6941	Cooling 878 6941		

Volume (ft ^s)	6941	6941
Air changes/hour	0.53	0.33
Equiv. AVF (cfm)	69	50
. ()		

Heating Equipment Summary

Make Trade	Generic						
Model AHRI ref	SEER 14.0, HSPF 8.1						
Efficiency	.4	8.2					

Heating input Heating output Temperature rise Actual air flow Air flow factor Static pressure Space thermostat

2 HSPF 14898 Btuh @ 47°F 27 499 cfm 0.039 cfm/Btuh 0 in H2O

Outside db	98 °F
Inside db	75 °F
Design TD	23 °F
Daily range	Н
Relátive humidity	50 %
Moisture difference	-3 gr/lb

Sensible Cooling Equipment Load Sizing

Summer Design Conditions

Structure	9285 Btuh
Ducts	0 Btuh
Central vent (0 cfm)	0 Btuh
Blower	0 Btuh
Use manufacturer's data	n
Rate/swing multiplier	1.03
Equipment sensible load	9554 Btuh

Latent Cooling Equipment Load Sizing

Structure Ducts Central vent (0 cfm) Equipment latent load	0	Btuh Btuh Btuh Btuh
Equipment total load	10253	Btuh
Req. total capacity at 0.70 SHR	1.1	ton

Cooling Equipment Summary

Make Trade	Generic		
Cond	SEER 14.0, HSPF	8.1	
AHRI ref	12.2 EE	R. 14 SEER	
Efficiency Sensible co Latent cooli	na -	10480 4492	
Total cooling Actual air flo	ow .	14972 499	cfm
Air flow fact Static press Load sensib	ure		cfm/Btuh in H2O
Load sensid	ie neal fallo	0.95	

Bold/Italic values have been manually overridden

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

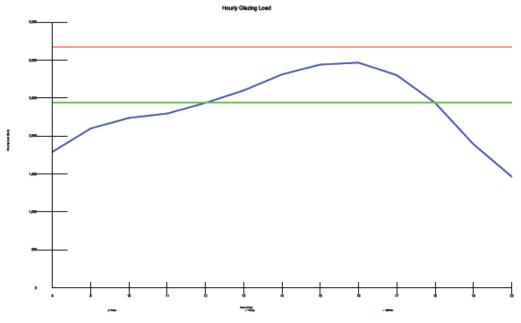
Hereightsoft Right-Sulle® Universal 2015 15.0.13 RSU00533

CCAWrightsuite/Grange/GRANGE-CA-Retrott_DEG_Frup Calc - MJ8 Front Door faces: SW

2015-Mar-24 14:39:51 Page 1

Pacific Gas and Electric Company

AED Assessment Entire House Wrightsoft Corp Job: Date: March 15, 2015 By:


131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For: Grange Retrofit, 3622 Grange Ave 3622 Grange Ave, Stockton, CA

Design Conditions											
Location: Stockton Metropolitan A Elevation: 26 ft Latitude: 38°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	P, CA, US Heating 33 - 15.0	Cooling 98 32 (H) 69 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) Infiltration:	Heating 70 37 30 10.9	Cooling 75 23 50 -3.0						

Test for Adequate Exposure Diversity

Maximum hourly glazing load exceeds average by 21.4%. House has adequate exposure diversity (AED), based on AED limit of 30%. AED excursion: 0 Btuh

Wrightsoft
Right-Suite® Universal 2015 15.0.13 RSU00533
Wrightsuite/Grange/GRANGE-CA-Retrott_DEG_Frup Calc-MJ8 Front Door faces: SW

2015-Mar-24 14:39:51 Page 1

Pacific Gas and Electric Company®

Job: Date: March 15, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	Room Expose Room Room Room	ed wall height dimensions		Entire House 110.0 ft 7.9 ft d 877.8 ft [*]			d	KITCHEN 17.8 ft 8.0 ft heat/cool 18.3 x 8.5 ft 138.1 ft*						
	Ту	Construction number	U-value (Btuh/ft³-°F)	Or	H' (Btul	TM h/ft²)	Area (ft²) Load or perimeter (ft) (Btuh)				(ft²) neter (ft)	Load (Btuh)		
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 · · · · · · · · · · · · · · · · · · ·	[■] Co [™] € [■] Co	12B-5sw 1 glazing, clr glz, 12B-5sw 1 glazing, clr glz, 12B-5sw 112B-5sw 11D0 12B-5sw 11D0 10B-50ad D0ffCeil 22A-tpm	0.068 0.300 0.068 0.300 0.300 0.300 0.300 0.300 0.020 0.020 0.020 1.180	ne se se sw sw sw - -	2.54 11.19 2.54 11.19 2.54 14.55 0.75 44.01	1.33 20.33 1.33 23.57 11.15 1.33 1.28 11.15 1.04 1.05 0.00	44 200 21 453	244 0 188 0 262 21 44 179 21 453 405 110	618 584 472 269 685 470 305 112 305 338 300 4842	348 990 234 58 230	0 0 12 0 0 0 102 21 0 0 102 21 38 138	0 12 109 0 81 21 0 0 138 18	0 0 276 235 0 0 283 306 0 104 781	0 0 145 485 0 0 104 234 0 0 148 0
6	-) excursion								0				105
40		pe loss/gain							9927	5211			2016	1245
12	b) Ro	filtration com ventilation							2848 0	1254 0			462 0	203 0
13	Internal gains: Occupants @ 230 Appliances/other						4			920 1900	1			230 1000
	Subtotal (lines 6 to 13)								12775	9285			2478	2678
14 15	Less external load Less transfer Redistribution Subtotal Duct loads							0%	0 0 12775 0	0 9285	-0%	0%	0 0 133 2611 0	0 0 89 2747 0
	Total re Air req	com load uired (cfm)							12775 499	9285 499			2611 102	2747 148

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Wrightsoft Right-Suite@Universal 2015 15.0.13 RSU00533

Job: Date: March 15, 2015 By:

131 Hartweil Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

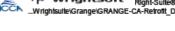
1 2 3 4 5	Room name Exposed wall Room height Room dimensions Room area						8.0 52.3	ft 1.0 x	ATH Bft hea < 52.3 1	t/cool It	HALL 4.8 ft 7.0 ft heat/cool 1.0 x 81.2 ft 81.2 ft ²			
	Ту	Construction number	U-value (Btuh/ft*-°F)	Or				Area (ft*) Lo or perimeter (ft) (B		d uh)	Area (ftª) or perimeter (ft)		Load (Btuh)	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
: 11		12B-5sw 1 glazing, elr glz, 12B-5sw 1 glazing, elr glz, 12B-5sw 1 glazing, elr glz, 1120-5sw Frm wall, stucco ext 1100 10B-50ad DftCeil 22A-tpm	0.068 0.300 0.068 0.300 0.300 0.300 0.300 0.300 0.088 0.094 0.300 0.020 1.180	ne se sv sv sv sv - -	2.54 11.19 2.54 11.19 14.55 0.75 44.01	1.33 20.33 1.33 23.57 11.15 1.33 1.28 11.15 1.06 0.00	0 00 58 9 9 0 44 0 0 52 52	0 00 49 00 44 00 52 13	0 0 0 1124 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 212 0 58 0 0 0	0 0 0 21 0 0 0 0 81 81	0 0 21 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 0 305 0 0	0 0 0 234 0 0 0 0 88 0
_										60				10
6	-) excursion pe loss/gain							937	451			607	-10 326
12	a) Inf	iltration							332 0				108	48 0
13	b) Room ventilation Internal gains: Occupants @ 230 Appliances/other						0			0	0			8
\vdash	Subtotal (lines 6 to 13)								1269	597			715	
14 15	Less external load Less transfer Redistribution Subtotal Duct loads							0%	0 0 189 1459 0	99 696	-0%	0%	0 0 -715 0 0	0
	Total re Air reg	oom load uired (cfm)							1459 57	696 37			0	0

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Pacific Gas and Electric Company[®]

Right-Suite@ Universal 2015 15.0.13 RSU00533

2015-Mar-24 14:39:51 Page 2



Job: Date: March 15, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	Room name Exposed wall Room height Room dimensions Room area						8.0 251.1	20.5 ft 20.5 x	FROOM 5 ft hear c 12.3 f	t/cool it	BEDROOM 2 28.8 ft heat/cool 16.5 x 12.3 ft 202.1 ft ³			
	Ту	Ty Construction U-value Or HTM number (Btuh/ffi²-°F) (Btuh/ffi²)						(ft²) neter (ft)	Loa (Btu			(ft²) Load neter (ft) (Btuh		
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 	ຌ຺ຌ຺ຓ ϶຺຺຺ ϶຺຺຺຺	12B-55w	0.068 0.300 0.068 0.300 0.300 0.300 0.300 0.300 0.002 0.020 1.180	ne se se sw sw - -	2.54 11.19 2.54 11.19 14.55 2.54 3.50 14.55 0.75 44.01	1.33 20.33 1.33 23.57 11.15 1.33 1.28 11.15 1.04 1.05 0.00	164 40 0 0 0 251 0 251	124 0 0 0 0 251 0 21	314 450 0 0 0 0 343 3 0 187 0 902	164 817 0 0 0 262 0 0	132 98 12 0 0 0 0 202 202	120 0 88 0 0 0 0 0 202 29	304 134 218 0 0 0 0 0 151 0 1285	159 244 114 283 0 0 0 0 211 0 0 0
6	c) AED) excursion								-73				-42
		pe loss/gain							2196	1296			2207	969
12	b) R	filtration com ventilation							534 0	235 0			748 0	329 0
13	Internal gains: Occupants @ 230 Appliances/other						1			230 900	1			230 0
14 15	Subtotal (lines 6 to 13) Less external load Less transfer Redistribution Subtotal Duct loads						-0%	0%	2730 0 181 2891 0	2661 0 84 2745 0	-0%	0%	2956 0 109 3065 0	1528 0 57 1585 0
	Total n Air req	com load uired (cfm)							2891 113	2745 148			3065 120	1585 85

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Wrightsoft
Right-Suite@Universal 2015 15.0.13 RSU00533
Wrightsuite/Grange/GRANGE-CA-Retrott_DEG_Frup Calc-MJ8 Front Door faces: SW

2015-Mar-24 14:39:51 Page 3

Pacific Gas and Electric Company[®]

đ	_		
2		,	
i	2443		
ł	NER	G	Ń
K	jaco.	U	P

Job: Date: March 15, 2015 By:

131 Harlweil Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	Exposed wall Room height Room dimensions						BEDROOM 1 25.5 ft 8.0 ft heat/cool 1.0 x 152.9 ft 152.9 ft							
	Ту	Construction number	ion U-value Or HTM (Btuh/ft³-°F) (Btuh/ft³)				Area (ft²) Load or perimeter (ft) (Btuh)			Area or perimeter		Load		
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 11		12B-5sw 1 glazing, clr glz, 12B-5sw 1 glazing, clr glz, 12B-5sw 1 glazing, clr glz, 11D0 12B-5sw Frm wall, stucco ext 11D0 10B-50ad DftCeil 22A-tpm	0.068 0.300 0.068 0.300 0.300 0.300 0.300 0.094 0.300 0.020 0.020 1.180	ne se se sw sw nw - - -	2.54 11.19 2.54 11.19 14.55 2.54 3.50 14.55 0.75 44.01	1.33 20.33 1.33 23.57 11.15 1.33 1.28 11.15 1.06 0.00	0 100 121 124 12 0 0 0 0 0 0 153 153	0 88 0 92 0 0 0 0 0 0 153 28	0 2233 134 233 134 0 0 0 0 0 0 115 1122	0 0 1117 283 283 0 0 0 0 0 0 0 0 0 161 0				
6	c) AED	excursion								-40				
	Envelo	pe loss/gain							1963	926				
12	a) Inf b) Ro	iltration com ventilation							664 0	292 0				
13	Internal gains: Occupants @ 230 Appliances/other						1			230 0				
Ш	Subtotal (lines 6 to 13)								2627	1448				
14 15	Less external load Less transfer Redistribution Subtotal Duct loads						-0%	0%	0 0 123 2750 0	0 0 64 1512 0				
	Total req	oom load uired (cfm)							2750 107	1512 81				

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Pacific Gas and Electric Company®

Job:

By:

Date: Feb 23, 2015

MAYFAIR LOAD CALCULATIONS

<i>_</i>	
Dunn	
ENERGY	
GROUP	

Load Short Form Entire House

Wrightsoft Corp

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For: Mayfair - Retrofit, K Hovnaninan Homes 16 West Mayfair Ave, Stockton, CA

Design Information				
	Htg	Clg		Infiltration
Outside db (°F)	33	98	Method	Blower door
Inside db (°È)	70	75	Shielding / stories	3 (partial) / 2
Design TD (°F)	37	23	Pressure / AVF	50 Pa / 981 cfm
Daily range	-	Н		
Inside humidity (%)	30	50		
Moisture difference (gr/lb)	11	-3		

HEATING EQUIPMENT

Make Generic Trade Model SEER 14.0, HSPF 8.1 AHRI ref

Efficiency Heating input Heating output Temperature rise Actual air flow Air flow factor Static pressure Space thermostat

8.2 HSPF 25761 Btuh @ 47°F 27 °F 863 cfm 0.055 cfm/Btuh 0.40 in H2O

COOLING EQUIPMENT

Generic Make Trade Cond SEER 14.0, HSPF 8.1 Coil AHRI ref Efficiency 12.2 EER, 14 SEER 18123 Btuh Sensible cooling Latent cooling 7767 Btuh Total cooling 25890 Btuh Actual air flow 863 cfm 0.057 cfm/Btuh Air flow factor 0.40 in H2O Static pressure Load sensible heat ratio 0.96

ROOM NAME	Area	Htg load	Clg load	Htg AVF	Clg AVF
	(ft²)	(Btuh)	(Btuh)	(cfm)	(cfm)
KITCHEN	146	2124	3008	118	172
BATH	54	681	528	38	30
BEDROOM 3	141	2736	2101	152	120
BEDROOM 2	167	2579	2156	143	123
BEDROOM 1	142	1773	1581	98	90
GREAT ROOM	437	5690	5708	315	327
Entire House d Other equip loads Equip. @ 1.03 RSM Latent cooling	1087	15583 0	15083 0 15521 654	863	863
TOTALS	1087	15583	16175	863	863

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

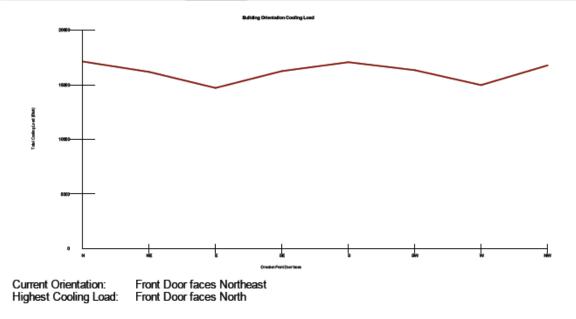
wrightsoft" Right-Suite® Universal 2015 15.0.13 RSU00533
Maylair/RSU Models/Maylair-Retroit_DEG_Frup Calc-MJ8 Front Door faces: NE

2015-Mar-24 16:51:29 Page 1

Pacific Gas and Electric Company®

Loads for Multiple Orientations Entire House Wrightsoft Corp

Job: Date: Feb 23, 2015 By:


131 HarbvellAve, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For: Mayfair - Retrofit, K Hovnaninan Homes 16 West Mayfair Ave, Stockton, CA

Design Conditions					
Location: Stockton Metropolitan/ Elevation: 26 ft Latitude: 38°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)		Cooling 98 32 (H) 69 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) Infiltration:	Heating 70 37 30 10.9	Cooling 75 23 50 -3.0

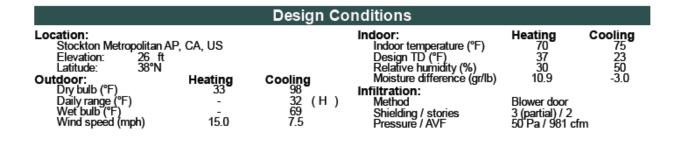
Front Door	North	Northeast	East	Southeast	South	Southwest	West	Northwest
Sensible Load (Btuh) Latent Load (Btuh) Total Load (Btuh) Heating AVF (cfm) Cooling AVF (cfm)	16479 654 17134 863 863	654 16175 863	14056 654 14710 863 863	654	16411 654 17065 863 863	15690 654 16345 863 863	14315 654 14970 863 863	16126 654 16781 863 863

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

wrightsoft" Right-Suite® Universal 2015 15.0.13 RSUD0533
 ...Mayfair/RSU Models/Mayfair-Retroit_DEG_Frup Calc-MJ8 Front Door faces: NE

2015-Mar-24 16:51:29 Page 1

Pacific Gas and Electric Company®

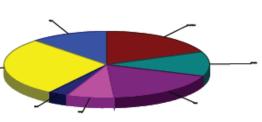


Building Analysis Entire House Wrightsoft Corp Job: Date: Feb 23, 2015 By:

131 HartwellAve, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For: Mayfair - Retrofit, K Hovnaninan Homes 16 West Mayfair Ave, Stockton, CA



Heating

% of load Btuh/ft² Btuh Component 3.4 11.9 14.5 0.7 3150 2333 586 811 Walls 20.2 15.0 3.8 5.2 28.8 27.0 0 0 0 Glazing Doors Ceilings 4491 4213 Floors Infiltration 4.1 4.2 Ducts 00 Piping Ō Humidification Ventilation Adjustments 0 Total 15583 100.0

Component	Btuh/ft ²	Btuh	% of load
Walls Glazing Doors	2.0 21.9 11.2	1842 4289 449	12.2 28.4 3.0 7.5
Ceilings Floors Infiltration	1.0 2.5 1.8	1132 2757 1794	7.5 18.3 11.9
Ducts Ventilation Internal gains		0 0 2820	0 0 18.7
Blower Adjustments Total		0 0 15083	0 100.0

Latent Cooling Load = 654 Btuh Overall U-value = 0.151 Btuh/ft²-°F

Data entries checked.

Right-Suite® Universal 2015 15.0.13 RSU00533

2015-Mar-24 16:51:30 Page 1

Pacific Gas and Electric Company®

Component Constructions Entire House Wrightsoft Corp

Job: Date: Feb 23, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

Mayfair - Retrofit, K Hovnaninan Homes 16 West Mayfair Ave, Stockton, CA For:

Design Conditions					
Location: Stockton Metropolitan AF Elevation: 26 ft Latitude: 38°N Outdoor:	P, CA, US Heating	Cooling	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb)	Heating 70 37 30 10.9	Cooling 75 23 50 -3.0
Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	33° - 15.0	98 32 (H) 69 7.5	Infiltration: Method Shielding / stories Pressure / AVF	Blower door 3 (partial) / 2 50 Pa / 981 cfn	1

Construction descriptions	Or	Area f²	U-value Bluhit!-"F	lnsulR ft∹*F/Btuh	Htg HTM Biuhite	Loss Buh	Clg HTM Btuh/ft≊	Gain Bluh
Walls								
12C-0sw: Frm wall, wd ext, 1/2" wood shth, r-13 cav ins, 1/2" gypsum	ne	204	0.091	13.0	3.39	692	2.15	438
board int fnsh, 2"x4" wood frm, 16" o.c. stud	se	265	0.091	13.0	3.39	898	2.15	568
	SW	52	0.091	13.0	3.39	177	2.15	112
	nw	240	0.091	13.0	3.39	814	2.15	515
	all	760	0.091	13.0	3.39	2581	2.15	1633
Partitions								
Frm wall, stucco ext, 1/2" wood shth, r-13 cav ins, 1/2" gypsum board int fnsh, 2"x4" wood frm, 16" o.c. stud: Frm wall, stucco ext, 1/2" wood shth, r-13 cav ins, 1/2" gypsum board int fnsh, 2"x4" wood frm, 16" o.c. stud		176	0.087	13.0	3.24	570	1.19	209
Windows 1 glazing, cir giz, mti /w brk frm mat, 1/8" thk: 1 glazing, cir giz, mti /w brk	ne	24	0.320	0	11.9	286	20.7	498
frm mat, 1/8" thk; NFRC rated (SHGC=0.25); 50% outdoor insect	ne se	24 72	0.320	0	11.9	∠80 864	20.7	498
screen: 6.67 ft head ht	se nw	99	0.320	0	11.9	804 1182	24.0	2055
	all	195	0.320	0	11.9	2333	21.9	4289
Doors								
11D0: Door, wd sc type	se	21	0.390	0	14.5	305	11.2	234
	nw	19	0.390	0	14.5	280	11.2	215
	all	40	0.390	0	14.5	586	11.2	449
Ceilings 16B-50ad: Attic œiling, asphalt shingles roof mat, r-5 roof ins, r-50 œil ins, 1/2" gypsum board int fnsh		1087	0.020	50.0	0.75	811	1.04	1132
Floors 19A-Ocsep: Fir floor, frm fir, 8" thkns, carpet fir fnsh, tight crwl ovr		1087	0.295	D	4.13	4491	2.54	2757

right-Suite® Universal 2015 15.0.13 RSU00533 2015-Mar-24 16:51:30 Page 1

Pacific Gas and Electric Company[®]

Project Summary Entire House Wrightsoft Corp

Job: Date: Feb 23, 2015 By:

> ℉ ℉ 98 75 23 H 50

%

ET14PGE8761

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

- Mayfair Retrofit, K Hovnaninan Homes 16 West Mayfair Ave, Stockton, CA For:
- Notes: Several assumptions had to be made in order to complete this model, due to incomplete data. Please reference the accompanying list of assumptions for details.

Outside db Inside db Design TD Daily range Relative humidity

Design Information

Weather: Stockton Metropolitan AP, CA, US

Winter Design Conditions

	-
Outside db	33 °F
Inside db	70 °F
Design TD	37 °F

Heating Summary

Structure	15583	Btuh
Ducts	0	Btuh
Central vent (0 cfm)	0	Btuh
Humidification	0	Btuh
Piping	0	Btuh
Equipment load	15583	Btuh

Infiltration

Method Shielding / stories Pressure / AVF		Blower door 3 (partial) / 2 9a / 981 cfm
Area (ft²) Volume (ft³) Air changes/hour	Heating 1087 8692 0.65	Cooling 1087 8692 0.40

Heating Equipment Summary

103

Make	Generic
Trade Model AHRI ref	SEER 14.0, HSPF 8.1

Efficiency Heating input Heating output Temperature rise Actual air flow Air flow factor Static pressure Space thermostat

Equiv. AVF (cfm)

8.2 HSPF 25761 Btuh @ 47°F 25/61 Dun w ---27 °F 863 cfm 0.055 cfm/Btuh 0.40 in H2O

71

Moisture difference -3 gr/lb

Summer Design Conditions

Sensible Cooling Equipment Load Sizing

Structure	15083 Btuh
Ducts	0 Btuh
Central vent (0 cfm)	0 Btuh
Blower	0 Btuh
Use manufacturer's data	n
Rate/swing multiplier	1.03
Equipment sensible load	15521 Btuh

Latent Cooling Equipment Load Sizing

Structure Ducts Central vent (0 cfm) Equipment latent load	õ	Btuh Btuh Btuh Btuh
Equipment total load Req. total capacity at 0.70 SHR	16175 1.8	

Cooling Equipment Summary

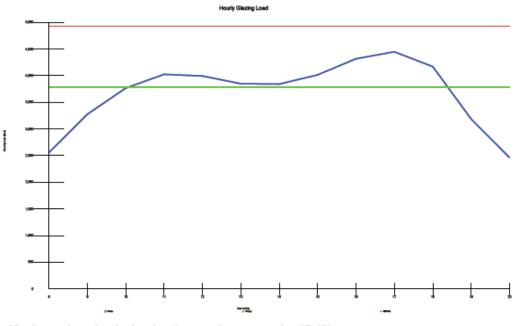
Make Trade	Generic		
Cond	SEER 14.0, HSPF 8.1		
Coil AHRI ref			
Efficiency Sensible coo	12.2 EER, 14 bling	18123	Btuh
Latent cooling	a –	7767 25890	Btuh Btuh
Actual air flo Air flow facto	w	863	cfm cfm/Btuh
Static press	ure	0.40	in H2O
Load sensib	e heat ratio	0.96	

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Right-Suite® Universal 2015 15.0.13 RSU00533 2015-Mar-24 16:51:30 Page 1

Pacific Gas and Electric Company

AED Assessment Entire House Wrightsoft Corp Job: Date: Feb 23, 2015 By:


131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For: Mayfair - Retrofit, K Hovnaninan Homes 16 West Mayfair Ave, Stockton, CA

Design Conditions												
Location: Stockton Metropolitan Al Elevation: 26 ft Latitude: 38°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wet bulb (°F)	P, CA, US Heating 33 - 15.0	Cooling 98 32 (H) 69 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) Infiltration:	Heating 70 37 30 10.9	Cooling 75 23 50 -3.0							

Test for Adequate Exposure Diversity

Maximum hourly glazing load exceeds average by 17.4%. House has adequate exposure diversity (AED), based on AED limit of 30%. AED excursion: 0 Btuh

 2015-Mar-24 16:51:30 Page 1

Pacific Gas and Electric Company®

Job: Date: Feb 23, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	Room Expose Room Room Room	ed wall height dimensions		8.0 1086.5	124. ft	e House 5 ft	d	KITCHEN 16.3 ft 8.0 ft 16.3 x 9.0 ft 146.3 ft ³						
	Ту	Construction number	U-value (Btuh/ft*-°F)	Or	H' (Btul	TM n√ft²)		(ft²) Neter (ft)	Loa (Btu			(ftª) neter (ft)	Load (Btuh)	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6	u B B B B B B B B B B B B B B B B B B B	12C-0sw 1 glazing, cir glz, 12C-0sw 1 glazing, cir glz, 11D0 12C-0sw	0.091 0.320 0.390 0.091 0.320 0.390 0.390 0.087 0.020 0.295	ne ne se se sw nw nw nw - -	3.39 11.94 3.39 11.94 14.55 3.39 11.94 14.55 4.13	2.15 20.74 2.15 23.99 11.15 2.15 20.74 11.15 1.19 1.04 2.54	228 24 358 72 21 21 52 358 99 99 99 19 1087	204 0 205 52 240 19 176 1087	305 177 814	438 448 568 1738 205 215 2055 215 205 215 205 215 205 215 205 215 205 215 205 215 205 215 205 215 205 215 205 215 205 215 205 215 205 215 205 215 205 215 205 205 215 205 205 205 205 205 205 205 205 205 20	0 0 0 0 24 19 0 148 148	0 0 0 87 9 19 146 146	0 0 0 294 280 0 109 605	0 0 0 0 188 498 215 0 152 371
6	c) AED	excursion								0				121
	Envelo	pe loss/gain							11370	10469			1575	1544
12	a) Inf b) Ro	iltration com ventilation							4213 0	1794 0			550 0	234 0
13	Interna	l gains:	Occupants Appliances	@ other	230		4			920 1900	1			230 1000
	Subtot	al (lines 6 to 13)							15583	15083			2124	3008
14 15	Less tr	ribution al					0%	0%	0 0 15583 0	0 0 15083 0	-0%	0%	0 0 2124 0	0 0 3008 0
		oom load uired (cfm)							15583 863	15083 863			2124 118	3008 172

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

2015-Mar-24 16:51:30 Page 1

Pacific Gas and Electric Company®

Job: Date: Feb 23, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	Room name Exposed wall Room height Room dimensions Room area						BATH 6.0 ft 8.0 ft heat/cool 6.0 x 9.0 ft 54.0 ft ⁼			BEDROOM 3 30.3 ft 8.0 ft heat/cool 1.0 x 140.6 ft 140.6 ft				
	Ту	Construction number	U-value (Btuh/ft=•°F)	Or	HT (Btul	⊓M √ft*)	Area (or perim	ft³) ieter (ft)	Loa (Btu			(ftª) neter (ft)	Loa (Btu	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 11	≱ 9 9 9 POF	12C-0sw 1 glazing, cir glz, 12C-0sw 1 glazing, cir glz, 11D0 12C-0sw 12C-0sw 12C-0sw 12C-0sw 12C-0sw 1glazing, cir glz, 11D0 Frm wall, stucco ext 19B-50ad 19A-0cscp	0.091 0.320 0.091 0.320 0.091 0.320 0.390 0.320 0.390 0.020 0.295	ne se se sw nw nw -	3.39 11.94 3.39 11.94 14.55 3.39 1.94 14.55 3.39 11.94 14.55 3.24 0.75 4.13	2.15 20.74 2.15 23.99 11.15 2.15 20.74 11.15 1.19 1.04 2.54	0 0 0 48 6 0 54 54	0 0 0 42 0 0 54 54	0 0 0 143 72 0 0 40 223	0 0 0 90 124 0 58 137	140 12 0 20 82 12 0 0 141 141	128 0 0 20 70 0 0 141 141	434 143 0 0 88 238 143 0 0 105 581	275 249 0 0 43 150 249 0 0 147 367
6	c) AED	excursion								34				-34
		pe loss/gain							478	442			1713	1435
12	a) Inf b) R	iltration com ventilation							203 0	86 0			1024 0	436 0
13		l gains:	Occupants Appliances/	@ /other	230		0			0	1			230 0
	Subtot	al (lines 6 to 13)							681	528			2736	2101
14 15	Less to Redist Subtot	Less external load Less transfer Redistribution Subtotal Duct loads						0%	0 0 681 0		-0%	0%	0 0 2736 0	0 0 2101 0
	Total re Air req	oom load uired (cfm)							681 38	528 30			2736 152	2101 120

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Right-Suite® Universal 2015 15.0.13 RSU00533 ...Wayfair/RSU Models/Mayfair-Retrott_DEG_Frup Calc=MJ8 Front Door faces: NE 2015-Mar-24 16:51:30 Page 2

Job: Date: Feb 23, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3	Room name Exposed wall Room height					8.0	25.0	OOM 2 D ft	t/cool	BEDROOM 1 15.5 ft 8.0 ft heat/cool				
3 4 5	Room	dimensions					167.1	ft 1.0 > ft ²	c 167.1 f	t	141.5	1.0 >	x 141.5 f	t
	Ту	Construction number	U-value (Btuh/ft³-°F)	Or	H' (Btul	TM n√ft™)		(ft²) neter (ft)	Loa (Btu			ft³) neter (ft)	Loa (Btu	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 11		12C-0sw 1 glazing, clr glz, 12C-0sw 1 glazing, clr glz, 11D0 12C-0sw 1 glazing, clr glz, 11D0 Frm wall, stucco ext 10B-50ad 19A-0cscp	0.091 0.320 0.091 0.320 0.390 0.091 0.020 0.390 0.295	ne se se sw nw nw -	3.39 11.94 3.39 11.94 14.55 3.39 11.94 14.55 4.13	2 15 20.74 2.15 23.89 11.15 2.15 20.74 11.15 1.19 1.04 2.54	88 12 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	76 0 98 0 0 0 0 0 167 167	258 143 3326 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0 92 92 16 0 32 0 0 0 142 142	0 0 78 0 0 0 0 0 0 0 0 1 42 142	0 258 191 0 109 0 0 0	0 0 183 384 0 0 0 0 0 0 0 147 359
6	c) AED	excursion								-35				6
	Envelo	pe loss/gain							1734	1565			1248	1128
12	a) Inf b) Ro	iltration xom ventilation							846 0	360 0			524 0	223 0
13	Interna	l gains:	Occupants Appliances/	@ other	230		1			230 0	1			230 0
	Subtot	al (lines 6 to 13)							2579	2156			1773	1581
14 15	Less external load Less transfer Redistribution Subtotal Duct loads						-0%	0%	0 0 2579 0	0 0 2156 0	-0%	0%	0 0 1773 0	0 0 1581 0
	Total ro Air requ	oom load uired (cfm)							2579 143	2156 123			1773 98	1581 90

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

1	
1	_
Ľ	24515
E	NERGY
	The second second

Job: Date: Feb 23, 2015 By:

131 Hartweil Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	Exposed wall Room height Room dimensions Room area						GREAT RODM 31.5 ft 8.0 ft heat/cool 1.0 x 437.0 ft 437.0 ft ²							
	Ту	Construction number	U-value (Btuh/ftª-°F)	Or	HT (Btul	TM n√ft²)		(ft²) ieter (ft)	Loa (Btu		Area or perin	neter	Load	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 11		12C-0sw 1 glazing, cir glz, 12C-0sw 1 glazing, cir glz, 11D0 12C-0sw	0.091 0.320 0.091 0.320 0.390 0.091 0.320 0.390 0.087 0.020 0.295	se se sw nw nw nw -	3.39 11.94 3.39 11.94 14.55 3.39 11.94 14.55 4.13	2.15 20.74 2.15 23.99 11.15 2.15 20.75 1.19 1.04 2.54	0 0 154 40 21 0 98 57 0 176 437 437	21 0 41 0 0	0 0 314 482 305 0 139 681 681 681 1806	0 1999 988 234 0 88 1184 0 209 455 1109				
6	c) AED	excursion								-92				
-		pe loss/gain							4624	4354				
12	b) Ro	iltration com ventilation							1066 0	454 0				
13	Interna	l gains:	Occupants Appliances/	@ /other	230		0			009 009				
		al (lines 6 to 13)							5690	5708				
14 15	Less tr						-0%	0%	0 0 5690 0	0 0 5708 0				
	Total r Air req	oom load uired (cfm)							5690 315	5708 327				

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

-WaytairRSU Models/Maytair-Retrott_DEG_F.rup Calc=MJ8 Front Door faces: NE

For:

CALEB LOAD CALCULATIONS

DAVIS
GROUP

Load Short Form Entire House Wrightsoft Corp

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

Caleb- Retrofit 1770 Caleb Circle, Stockton, CA

Design Information												
Outside db (°F) Inside db (°F) Design TD (°F) Daily range Inside humidity (%) Moisture difference (gr/lb)	Htg 33 70 37 - 30 11	Clg 98 75 23 H 50 -3	Method Shielding / stories Pressure / AVF	Infiltration Blower door 3 (partial) / 2 50 Pa / 1615 cfm								

HEATING EQUIPMENT

Make Generic Trade Model SEER 14.0, HSPF 8.1 AHRI ref

Efficiency

Heating input

Heating output

Actual air flow

Air flow factor

Static pressure

Space thermostat

Temperature rise

8.2 HSPF 35540 Btuh @ 47°F 27 °F 1191 cfm 0.047 cfm/Btuh 0 in H2O

COOLING EQUIPMENT

Generic Make Trade Cond SEER 14.0, HSPF 8.1 Coil AHRI ref Efficiency 12.2 EER, 14 SEER Sensible cooling 25003 Btuh Latent cooling 10715 Btuh Total cooling 35718 Btuh Actual air flow 1191 cfm 0.059 cfm/Btuh Air flow factor Static pressure 0.40 in H2O 0.96 Load sensible heat ratio

ROOM NAME	Area	Htg load	Clg load	Htg AVF	Clg AVF
	(ft²)	(Btuh)	(Btuh)	(cfm)	(cfm)
BED 1 BED 2 MASTER BED GREAT ROOM BATH LAUNDRY KITCHEN ROOM 11 BED 3 BONUS MASTER BATH BATH 2	157 160 253 656 35 56 199 67 140 264 124 61	1716 1846 2357 10059 1239 590 3117 0 1081 1449 1629 0	1617 1467 2290 6312 369 744 2912 0 1830 1493 1187 0	81 88 112 478 59 28 148 0 51 69 77 0	95 86 135 372 22 44 172 0 108 88 88 70 0

Bold/Italic values have been manually overridden

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

-pingWrightsufe/Caleb/Caleb/Caleb/Caleb-Refrott_DEG_Frup Cale-MU8 FrontDoor faces: S

2015-Mar-24 14:19:56 Page 1

Pacific Gas and Electric Company[®] Job: Date: March 15, 2015 By:

PG&E's Emerging Technologies Program

ET14PGE8761

Entire House d Other equip loads Equip. @ 1.03 RSM Latent cooling	2171	25084 0	20221 0 20807 770	1191	1191
TOTALS	2171	25084	21577	1191	1191

Bold/trailic values have been manually overridden

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

wrightsoft" Right-Sulle® Universal 2015 15.0.13 RSU00533

PGSE

Pacific Gas and Electric Company®

95

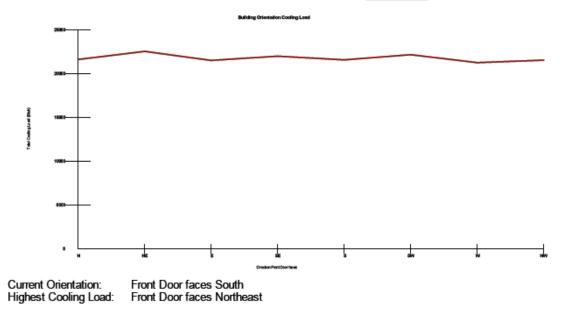
2015-Mar-24 14:19:56 Page 2 For:

ET14PGE8761

Loads for Multiple Orientations Entire House Wrightsoft Corp

Job: Date: March 15, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com


Project Information

Caleb-Retrofit

1770 Caleb Circle, Stockton, CA

Design Conditions								
Location: Stockton Metropolitan Elevation: 26 ft Latitude: 38°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)		Cooling 98 32 (H) 69 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) Infiltration:	Heating 70 37 30 10.9	Cooling 75 23 50 -3.0			
T								

Front Door	North	Northeast	East	Southeast	South	Southwest	West	Northwest
Sensible Load (Btuh) Latent Load (Btuh) Total Load (Btuh) Heating AVF (cfm) Cooling AVF (cfm)	20866 770 21636 1191 1191	770 22555 1191	20749 770 21519 1191 1191	770	770	21407 770 22176 1191 1191	770	20787 770 21556 1191 1191

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

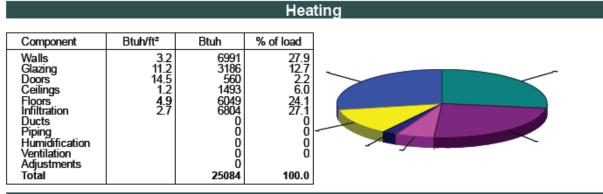
Right-Suite® Universal 2015 15.0.13 RSU00533

2015-Mar-24 14:19:56 Page 1

Pacific Gas and Electric Company®

Building Analysis Entire House Wrightsoft Corp

Job: Date: March 15, 2015 By:


131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For:

Caleb- Retrofit 1770 Caleb Circle, Stockton, CA

Design Conditions							
Location: Stockton Metropolitan AF Elevation: 26 ft Latitude: 38°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	P, CA, US Heating 33 - 15.0	Cooling 98 32 (H) 69 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) Infiltration: Method Shielding / stories Pressure / AVF	Heating 70 37 30 10.9 Blower door 3 (partial) / 2 50 Pa / 1615 cfr	Cooling 75 23 50 -3.0		

Cooling

Component	Btuh/ft ²	Btuh	% of load
Walls Glazing Doors Ceilings Floors Infiltration Ducts Ventilation	1.9 24.8 11.2 1.7 0.1 1.1	4128 7071 429 2085 122 2836 0	20.4 35.0 2.1 10.3 0.6 14.0 0
Internal gains Blower Adjustments Total		3550 0 20221	17.6 0 100.0

Latent Cooling Load = 770 Btuh Overall U-value = 0.099 Btuh/ft²-°F

Data entries checked.

H wrightsoft Right-Sulle® Universal 2015 15.0.13 RSU00533 ...pingiWrightsulle/Caleb/Caleb-Retrott_DEG_Frup Calc - MJ8 Front Door faces: S 2015-Mar-24 14:19:57 Page 1

Pacific Gas and Electric Company[®]

Component Constructions Entire House Wrightsoft Corp

Job: Date: March 15, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For: Caleb- Retrofit 1770 Caleb Circle, Stockton, CA

Design Conditions							
Location: Stockton Metropolitan AF Elevation: 26 ft Latitude: 38°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	P, CA, US Heating 33 - 15.0	Cooling 98 32 (H) 69 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) Infiltration: Method Shielding / stories Pressure / AVF	Heating 70 37 30 10.9 Blower door 3 (partial) / 2 50 Pa / 1615 cfr	Cooling 75 23 50 -3.0		

Construction descriptions	Or	Area fi²	U-value Biuhiti-F	lnsul R ft⁼-"F/Bbuh	Htg HTM Bluhtte	Loss Btuh	Clg HTM Btulvft*	Gain Bluh
Walls								
12C-0sw: Frm wall, wd ext, 1/2" wood shth, r-13 cav ins, 1/2" gypsum	n	51	0.091	13.0	3.39	171	2.15	108
board int fnsh, 2"x4" wood frm, 16" o.c. stud	ne	13	0.091	13.0	3.39	42	2.15	27
	e	108	0.091	13.0	3.39	365	2.15	231
	s	80	0.091	13.0	3.39	272	2.15	172
	w	184	0.091	13.0	3.39	625	2.15	395
	all	435	0.091	13.0	3.39	1475	2.15	933
12D-0sw: Frm wall, wd ext, 1/2" wood shth, r-17 cav ins, 1/2" gypsum	n	256	0.086	15.0	3.21	821	1.86	476
board int fnsh, 2"x4" wood frm, 16" o.c. stud	e	630	0.086	15.0	3.21	2019	1.86	1169
	se	32	0.086	15.0	3.21	102	1.86	59
	s	259	0.086	15.0	3.21	829	1.86	480
	SW	28	0.086	15.0	3.21	91	1.86	53
	w	476	0.086	15.0	3.21	1527	1.86	884
	nw	40	0.086	15.0	3.21	127	1.86	73
	all	1720	0.086	15.0	3.21	5517	1.86	3195
Partitions (none)								
Windows								
2 glazing, clr outr, air gas, mtl /w brk frm mat, clr innr, 1/4" gap, 1/4" thk:	n	12	0.300	0	11.2	134	12.4	149
2 glazing, clr outr, air gas, mtl /w brk frm mat, clr innr, 1/4" gap, 1/4" thk;	n	36	0.300	0	11.2	403	12.4	446
NFRC rated (SHGC=0.35); 50% outdoor insect screen; 6.67 ft head ht	e	24	0.300	0	11.2	269	36.0	865
	SW	39	0.300	0	11.2	435	30.5	1186
	w	16	0.300	0	11.2	179	36.0	577
	w	13	0.300	0	11.2	145	36.0	466
	all	140	0.300	0	11.2	1564	26.4	3688
2 glazing, clr outr, air gas, mtl /w brk frm mat, clr innr, 1/4" gap, 1/4" thk:	n	48	0.300	0	11.2	537	10.8	518
2 glazing, clr outr, air gas, mtl /w brk frm mat, clr innr, 1/4" gap, 1/4" thk;	e	33	0.300	0	11.2	369	31.6	1044
NFRC rated (SHGC=0.35); 50% blinds closed, dark; 50% outdoor insect	5	24	0.300	0	11.2	269	16.0	383
screen; 6.67 ft head ht	w	40	0.300	0	11.2	448	31.6	1265
	all	145	0.300	0	11.2	1623	22.1	3210

Right-Suite® Universal 2015 15.0.13 RSU00533

2015-Mar-24 14:19:57 Page 1

Pacific Gas and Electric Company®

ET14PGE8761

Doors 11D0: Door, wd sc type	s nw all	18 21 39	0.390 0.390 0.390	0 0	14.5 14.5 14.5	255 305 560	11.2 11.2 11.2	195 234 429
	an	28	0.580	U	14.0	500	11.2	428
Ceilings 18B-30ad: Attic ceiling, asphalt shingles roof mat, r-30 ceil ins, 1/2" gypsum board int fnsh		1226	0.032	30.0	1.19	1463	1.67	2044
16B-7ad: Attic ceiling, asphalt shingles roof mat, r-7 ceil ins, 1/2" gypsum board int fnsh		7	0.112	7.0	4.18	30	5.84	41
Floors 20P-30c: Fir floor, frm fir, 6" thkns, carpet fir fnsh, r-30 cav ins, amb ovr		287	0.035	30.0	1.31	375	0.42	122
22A-tpm: Bg floor, heavy dry or light damp soil, on grade depth		129	1.180	0	44.0	5674	0	0

Right-Suite® Universal 2015 15.0.13 RSU00533

2015-Mar-24 14:19:57 Page 2

Pacific Gas and Electric Company®

DAVIS ENERGY GROUP

Project Summary Entire House Wrightsoft Corp

Job: Date: March 15, 2015 Bv:

ET14PGE8761

131 Hartweil Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

Project Information

For:

Caleb-Retrofit 1770 Caleb Circle, Stockton, CA

Notes: Several assumptions had to be made in order to complete this model, due to incomplete data. Please reference the accompanying list of assumptions for details.

> Outside db Inside db Design TD Daily range

Design Information

Weather: Stockton Metropolitan AP, CA, US

Winter Design Conditions

	-	
Outside db Inside db	33 ° 70 °	-
inside db	70	г
Design TD	37 °	Έ

Heating Summary

Structure	25084	Btuh
Ducts	0	Btuh
Central vent (0 cfm)	0	Btuh
Humidification	0	Btuh
Piping	0	Btuh
Equipment load	25084	Btuh

Infiltration

Method	Blower doo				
Shielding / stories	3 (partial) / 2				
Pressure / AVF	50 Pa / 1615 cfn				
Area (ft²) Volume (ft³)	Heating 2171 19263	Cooling 2171 19263			

Volume (ft ^a)	19263	19263
Air changes/hour	0.48	0.30
Equiv. AŬF (cfm)	166	113
,		

Heating Equipment Summary

Make Trade	Generic	
Model AHRI ref	SEER 14.0, HSPF 8.1	1
Efficiency Heating inp Heating out		8.2 H
Heating out	put	35540

Temperature rise Actual air flow Air flow factor Static pressure Space thermostat

HSPF Btuh @ 47°F ۳Ê 27 1191 cfm 0.047 cfm/Btuh 0 in H2O

98 °F 75 °F 23 °F 50 % Relative humidity Moisture difference -3 gr/lb

Summer Design Conditions

Sensible Cooling Equipment Load Sizing

Structure	20221 Btuh
Ducts	0 Btuh
Central vent (0 cfm)	0 Btuh
Blower	0 Btuh
Use manufacturer's data	n
Rate/swing multiplier	1.03
Equipment sensible load	20807 Btuh

Latent Cooling Equipment Load Sizing

Structure Ducts Central vent (0 cfm) Equipment latent load	0	Btuh Btuh Btuh Btuh
Equipment total load Req. total capacity at 0.70 SHR	21577 2.5	

Cooling Equipment Summary

Make Trade	Generic			
Cond	SEER 14.0, I	HSPF 8.1		
AHRI ref Efficiency Sensible co Latent coolin Total cooling Actual air flo Air flow fact Static press Load sensib	oling ng J ow or ure	2.2 EER, 14	25003 10715 35718 1191 0.059	

Bold/Italic values have been manually overridden

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

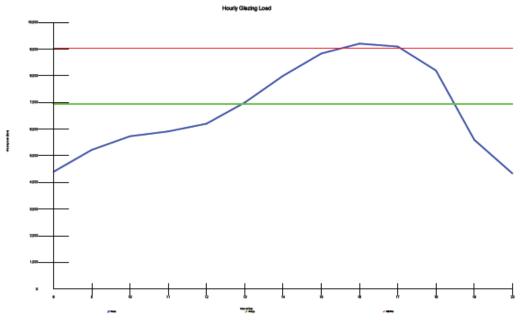
Hereightsoft Right-Sulle® Universal 2015 15.0.13 RSU00533 CCA ...ping/Wrightsutte/Caleb/Caleb-Retrott_DEG_F.rup Calc - MJ8 Front Door faces: S

Pacific Gas and Electric Company 2015-Mar-24 14:19:57 Page 1 For:

ET14PGE8761

AED Assessment Entire House Wrightsoft Corp Job: Date: March 15, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com


Project Information

Caleb- Retrofit

1770 Caleb Circle, Stockton, CA

Design Conditions											
Location: Stockton Metropolitan AF Elevation: 26 ft Latitude: 38°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	P, CA, US Heating 33 - 15.0	Cooling 98 32 (H) 69 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) Infiltration:	Heating 70 37 30 10.9	Cooling 75 23 50 -3.0						

Test for Adequate Exposure Diversity

Maximum hourly glazing load exceeds average by 32.5%. House does not have adequate exposure diversity (AED), based on AED limit of 30%. AED excursion: 173 Btuh (PFG - 1.3*AFG)

wrightsoft" Right-Suite@ Universal 2015 15.0.13 RSUDD533
 __pingiWrlightsuite/Caleb/Caleb-Retroit_DEG_Frup Calc-MJ8 Front Door faces: S

2015-Mar-24 14:19:57 Page 1

Pacific Gas and Electric Company®

Job: Date: March 15, 2015 By:

131 Hartweil Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	2 Exposed wall 3 Room height 4 Room dimensions					Entire House 277.4 ft 8.9 ft d 2171.4 ft ³			BED 1 26.0 ft heat/cool 1.0 x 158.8 ft 156.8 ft ²					
	Ту	Construction number	U-value (Btuh/ft=-°F)	Or	H' (Btul	TM h/ft*)	Area (or perim	ft²) ieter (ft)	Loa (Btu		Area (or perim	(ftª) neter (ft)	Load (Btuh)	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 11	ے اچ اچ اچ اچ اچ اچ	12C-0sw 2 glazing, clr outr, 12D-0sw 2 glazing, clr outr, 2 glazing, clr outr, 12C-0sw 12C-0sw 12D-0sw 2 glazing, clr outr, 12D-0sw 2 glazing, clr outr, 12D-0sw 2 glazing, clr outr, 12D-0sw 2 glazing, clr outr, 12D-0sw 120-0sw 2 glazing, clr outr, 12D-0sw 1100 108-30ad 108-7ad 20P-30c 22A-tpm	0.091 0.300 0.096 0.300 0.091 0.091 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.096 0.300 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.096 0.091 0.096 0.091 0.096 0.091 0.096 0.091 0.096 0.091 0.096 0.091 0.096 0.000 0.096	n nn n nee e e e s s s s s s s s s s s s	3.39 11.19 3.211 11.19 13.39 3.212 11.19 3.39 14.55 3.213 11.19 3.219 3.219 3.211 11.19 3.211 11.19 3.211 11.19 3.211 4.55 3.21 11.19 3.21	2.15 12.39 1.86 12.39 10.79 2.15 36.05 31.63 31.63 36.05 31.63 36.05 36.05 36.05 36.05 31.63 31.63 36.05 36.05 31.63 31.63 31.63 3.05 31.63 3.05 31.63 3.05 31.63 3.05 31.63 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.0	63 12 340 38 48 13 108 687 24 33 33 22 88 18 283 24 61 529 13 40 529 13 200 16 529 13 200 210 529 13 210 210 210 210 210 210 210 210 210 210	51 0 258 0 0 13 108 630 0 0 322 80 0 28 0 28 0 0 28 0 0 28 0 0 28 0 0 28 0 0 28 0 0 28 0 0 28 0 0 28 0 0 28 0 0 28 0 0 28 0 0 28 0 0 28 0 0 0 322 80 0 28 0 0 0 0 322 80 0 0 28 0 0 0 322 80 0 0 0 322 80 0 0 322 80 0 0 322 80 0 0 322 80 0 0 322 80 0 0 322 80 0 0 322 80 0 0 322 80 0 0 322 80 0 0 322 80 0 0 322 80 0 0 28 0 0 0 322 80 0 0 28 0 28 0 0 28 0 0 29 0 28 0 0 28 0 28	1711 134 8213 403 385 2019 289 299 209 209 200 2172 255 8299 209 209 2172 255 8299 209 2173 145 145 145 145 5674	108 149 476 446 518 27 231 1160 885 1044 507 886 1285 577 884 480 385 577 884 480 1285 73 234 2044 41 1225 0	0 92 0 0 0 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 218 0 0 333 0 138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 128 0 259 0 0 193 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6) excursion								173				-80
42		pe loss/gain iltration							18280 6804	13834 2836			1144	1149
12	6) R	com ventilation	Oner	~	230				0804	0	1		571 0	238 0
13		l gains:	Occupants Appliances/	02 other	230		5		25004	1150 2400	1		4740	230
14 15	Less e Less t						0%	0%	25084 0 0 25084 0		-0%	0%	1716 0 0 1718 0	1617 0 0 1617 0
		oom load uired (cfm)							25084 1191	20221 1191			1716 81	1617 95

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Pacific Gas and Electric Company®

102

2015-Mar-24 14:19:57 Page 1

Job: Date: March 15, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	2 Exposed wall 3 Room height 4 Room dimensions					LAUNDRY 3.8 ft 10.0 ft heat/cool 1.0 x 55.9 ft 55.9 ft ²			KITCHEN 27.5 ft 10.0 ft heat/cool 1.0 x 199.0 ft 199.0 ft ⁼					
	Ту	Construction number	U-value (Btuh/ft*-°F)	9	H' (Btul	TM h√ft™)	Area (or perim	(ft²) neter (ft)	Loa (Btu		Area (or perim	(ft²) neter (ft)	Load (Btuh)	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 · · · · · · · · · · · · · · · · · · ·	ے اچ عامدہ وہ میں	12C-Osw 2 glazing, clr outr, 12D-Osw 2 glazing, clr outr, 2 olazin, clr outr, 12C-Osw 12C-Osw 12D-Osw 2 glazing, clr outr, 12D-Osw 2 glazing, clr outr, 12D-Osw 2 glazing, clr outr, 12D-Osw 2 glazing, clr outr, 12D-Osw 2 glazing, clr outr, 12D-Osw 12D-Osw 12D-Osw 12D-Osw 11D0 16B-30ad 16B-7ad 20P-30c	0.091 0.300 0.086 0.300 0.091 0.091 0.096 0.300 0.096 0.300 0.096 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300	n n n n n e e e e e s s s s s s s s s s	3.39 11.19 3.211 11.19 11.19 3.39 14.55 3.211 11.19 3.212 11.19 3.211 11.19 3.211 11.19 3.211 11.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 3.21 1.19 3.21 1.19 3.21 1.19 3.21 3.21 1.19 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21	2.15 12.39 1.28 12.39 10.79 2.15 38.05 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 32.15 36.05 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 32.15 36.05 31.63 31.63 32.65 32.65 31.63 32.65 32.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	63 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	171 134 0 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108 149 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6) excursion								-37				112
40		pe loss/gain							488	201			2362	1367
12	b) Ro	filtration com ventilation	0 /	_					103 0	43 0			755 0	315 0
13		l gains:	Occupants Appliances/	@ other	230		0		590	0 500	1			230 1000
14 15	Less e Less tr						-0%	0%	590 0 590 590	744 0 0 744 0	-0%	0%	3117 0 0 3117 0	2912 0 0 2912 0
	Total re Air req	oom load uired (cfm)							590 28	744 44			3117 148	2912 172

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Ling Wrightsoft Right-Sulte® Universal 2015 15.0.13 RSUD0533

2015-Mar-24 14:19:57 Page 4

Pacific Gas and Electric Company®

Job: Date: March 15, 2015 By:

131 Hartwell Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	Room Expose Room Room Room	ed wall height dimensions					8.0 67.2	ft 6.3 x	OM 11 3 ft hea ∢ 10.8 f	t/cool ît	8.0 140.3	ft 12.8	ED3 8 ft x 11.0 f	t/cool t
	Ту	Construction number	U-value (Btuh/ftª-°F)	Or	H) (Btul	TM n√ft™)	Area (or perim	(ft²) leter (ft)	Loa (Btu		Area (or perim	ft") Neter (ft)	Loa (Btu	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
		12C-0sw 2 glazing, clr outr, 2 glazing, clr outr, 2 glazing, clr outr, 12C-0sw 12C-0sw 2 glazing, clr outr, 2 glazing, clr outr, 12D-0sw 12D-0sw 2 glazing, clr outr, 12D-0sw 2 glazing, clr outr, 12D-0sw 100 10B-30ad 10B-7ad 20P-30c 22A-tpm	0.091 0.300 0.096 0.300 0.091 0.096 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.088 0.300	n n n n n e e e e e se s s s s s s s s s	3.39 11.19 3.21 11.19 3.39 3.21 11.19	2.15 12.39 1.88 12.39 10.79 2.15 2.15 36.05 31.63 30.53 2.15 36.05 31.63 31.63 30.53 1.88 30.53 1.88 31.63 3			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6	,	excursion								-13				301
40		pe loss/gain							250	206			654	1319
12	b) Room ventilation						137 0	57 0	1		280 0	117		
13	Appliances/other				0		387	0 0 264	1		934	230 0 1686		
14 15						-0%	0%	-387 0 -387 0 0	0 0 -264 0	-0%	0%	0 0 146 1081 0	1600 0 163 1830 0	
	Total ro Air requ	oom load uired (cfm)							0	0			1081 51	1830 108

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Right-Sulte@ Universal 2015 15.0.13 RSUD0533 __pingWrightsulte/Caleb/Caleb-Refrott_DEG_Frup Calc-MJ8 Front Door faces: S

Pacific Gas and Electric Company®

Job: Date: March 15, 2015 By:

131 Hartweil Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	Room r Expose Room r Room a	ed wall height dimensions					8.0 264.2	ft 1.0 x	NUS Dft hear c 264.2 f	t/cool ît	8.0 123.6	ft 11.5 x	ERBATH 3 ft heat < 10.8 f	t/cool t
	Ту	Construction number	U-value (Btuh/ftª-°F)	Or	HT (Btul	rm vft²)	Area (or perim	(ft²) ieter (ft)	Loa (Btu		Area (or perim	ft³) eter (ft)	Loa (Btu	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 11	y loc y y y loc y y y y y y y y y y y y y y y y y y y	12C-Usw 2 glazing, clr outr, 12D-Usw 2 glazing, clr outr, 12C-Usw 12C-Usw 12C-Usw 12D-Usw 2 glazing, clr outr, 12D-Usw 11D0 12D-Usw 2 glazing, clr outr, 12D-Usw 2 glazing, clr outr, 12D-Usw 2 glazing, clr outr, 12D-Usw 2 glazing, clr outr, 12D-Usw 1108-30ad 108-30ad 108-7ad 20P-30c 22A-tpm	0.091 0.300 0.086 0.300 0.091 0.091 0.086 0.300 0.086	「「「「」」」」」、「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」	3.39 11.19 3.21 11.19 11.19 3.39 14.55 3.21 11.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21	2.15 12.39 1.28 12.39 10.79 2.15 38.05 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 32.15 38.05 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 32.65 31.63 31.63 31.63 32.65 31.63 32.65 31.63 32.65 31.63 32.65 32.	0 0 0 0 138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 396 142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 229 401 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 92 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 289 0 0 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 158 253 0 0 0 0 145 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6		excursion								83				-54
42		pe loss/gain							853	1153			990	881
12	b) Ro	iltration com ventilation	0	_	000				373 0	156			489 0	204
13	Appliances/other				0		4000	1300	0		4470	0		
14 15		ibution al					-0%	0%	1226 0 223 1449 0	1309 0 184 1493 0	-0%	0%	1479 0 150 1629 0	1085 0 102 1187 0
		oom load uired (cfm)							1449 69	1493 88			1629 77	1187 70

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

ACCA _ping/Wrightsuite/Caleb/Caleb/Retrott_DEG_Frup Calc-MJ8 Front Door faces: S

Job: Date: March 15, 2015 By:

131 Hartweil Ave, Lexington, MA 02421 Phone: 800-225-8697 Fax: 781-861-2058 Web: www.wrightsoft.com

1 2 3 4 5	2 Exposed wall 3 Room height 4 Room dimensions					BATH 2 5.5 ft 8.0 ft heat/cool 5.5 x 11.0 ft 60.5 ft ²								
	Ту	Construction number	U-value (Btuh/ft³-°F)	Or	HT (Btul	TM √ft²)	Area (or perin	(ft²) neter (ft)	Loa (Btu		Area or perin	neter	Loa	d
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 · · · 11	₃┘₃┘┘₃┘₃┘₃┘₃┘₃┘₃┘₃┘	12C-0sw 2 glazing, elr outr, 12D-0sw 2 glazing, elr outr, 12C-0sw 12C-0sw 12D-0sw 2 glazing, elr outr, 2 glazing, elr outr, 12D-0sw 2 glazing, elr outr, 12D-0sw 2 glazing, elr outr, 12D-0sw 2 glazing, elr outr, 12D-0sw 1100 2 glazing, elr outr, 12D-0sw 1100 2 glazing, elr outr, 2 glazin	0.091 0.300 0.086 0.300 0.091 0.091 0.096 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.086 0.300 0.088 0.300	n nn nee e e e s s s s s s s s s s s s s	3.39 11.19 3.21 11.19 3.39 3.21 11.19 3.21 1.19 3.21 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 3.21 1.19 3.21 1.19 3.21 1.19 3.21 1.19 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21	2.15 12.39 1.86 12.39 10.79 2.15 31.63 36.05 31.63 30.05 30.05 3.605 31.63 36.05 36.05 31.63 31.63 36.05 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 31.63 32.15 36.05 31.63 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 32.15 36.05 31.63 32.15 36.05 31.63 32.15 36.05 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 32.15 36.05 31.63 31.63 31.63 31.63 31.63 32.15 36.05 31.63 31.	00000000000000000000000000000000000000	000 00 000 000 000 000 000 000 000 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
6	-	excursion							245	56 358				
12		pe loss/gain iltration							240	308				
	6) R	com ventilation	0						0	0				
13	13 Internal gains: Occupants @ 230 Appliances/other				0			0						
\mid		al (lines 6 to 13)							366	408				
14 15	Less external load Less transfer Redistribution 14 Subtotal 15 Duct loads					-0%	0%	0 -386 0 0	0 -408 0 0					
	Total room load Air required (ofm)								0	0				

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

CCA Ht wrightsoft Right-Suite® Universal 2015 15.0.13 RSU00533

Pacific Gas and Electric Company®

APPENDIX B – REFERENCE SYSTEM COMMISSIONING REPORTS

GRANGE REFERENCE SYSTEM COMMISSIONING REPORT

Base Case Air Source Heat Pump Installation - at Grange

Site:	
Commissioning Date	15-May-15
Installers	Mike MacFarland
	Brian Tyrrell

Installed Equipment		
Outdoor Unit Make		
Outdoor Unit Model#		
Indoor Unit Make		
Indoor Unit Model#		
Refrigerant type	410A	
Quantity of refr in system	7 lbs 13.0 oz	lbs, oz

Comments:

1. The condensing unit came from the factory and had been used in testing.

The condensing unit was received with the service valves open (which alowed air and moisture into the
 A new filter/dryer was installed at the indoor unit.

Final Airflow Measurements		_		
Total airflow	608	cfm	Measured using:	True Flow
Indoor fan Watt draw	170	Watts	Measured using:	Extech 380940
Watt/cfm	0.28	W/cfm		
Cooling mode static pressure	0.41	" w.c.	Measured using:	DG-700
Register Airflows				

Negister Annows
Measured using: Flow Blaster
Manual-J Target Final
5/15/2015
Kitchen 155 209 182
Hall 39 0
Bath 0 0
Great Room 155 209 174
Bedroom 2 90 135 131
Bedroom 1 86 131 119
Total 525 684 606

Comments:

1. The system had to be re-balanced to provide evan cooling room-to-room.

HP Operation Verification

Measurements taken after 10 minutes of cooling operation

89 Outdoor temperature

Take all temperature and power readings within 60 seconds of each other Fluke 52-2

58.3	Measured using:
77.1	Measured using:
1,280	Measured using:
170	Measured using:
5.5	Measured using:
5	Measured using:

Measured using:

Fluke 52-2	
Fluke 52-2	
Extech 380940	
Extech 380940	
JB Digital Gauge Set	
JB Digital Gauge Set	

Comments:

"By signing, I certify the above readings and attest that the installed unit has been properly installed

and is operating as intended:"

Commissioning Agent 1	
Commissioning Agent 2	

Mike MacFarland **Rick Chitwood**

Measurement Equipment Accuracy:	
Electronic Charging Scales, Accu-charge II	0.5% of reading +/- least significant digit
Air Flow Measurement, Energy Conservatory TrueFlow	+/- 7% when used with the DG-700 manometer
Watt Meter, Extech 380940	+/- 1.5% + 3 dgts (10 W resolution)
Manometer, Energy Conservatory DG-700	+/- 1% of reading or 2 times the resolution, whichever is greater
Capture Hood, Energy Conservatory FlowBlaster	+/- 5% of indicated flow or +/- 2 CFM
Digital Thermometer, Fluke 52-2	+/- 0.05% +0.3C
Digital Refrigeration Gauge Set, JB DM2-3	+/- 0.5% pressure, +/- 0.9F temperature

MAYFAIR REFERENCE SYSTEM COMMISSIONING REPORT

Base Case Air Source Heat Pump Installation - at Mayfair

Site:	
Commissioning Date	
Installers	

5/13/2015
Mike MacFarland
Brian Tyrrell

Installed Equipment	
Outdoor Unit Make	
Outdoor Unit Model#	
Indoor Unit Make	
Indoor Unit Model#	
Refrigerant type	410A
Quantity of refr in system	8 lbs 13.0 oz

100

73

0

266

700

Total

127

94

160

160

830

Comments:

1. The condensing unit came from the factory and had been used in testing.

lbs, oz

The condensing unit was received with the service valves open (which alowed air and moisture into the
 A new filter/dryer was installed at the indoor unit.

Final Airflow Measurements				
Total airflow	827	cfm	Measured using:	True Flow
Indoor fan Watt draw	240	Watts	Measured using:	Extech 380940
Watt/cfm	0.29	W/cfm		
Cooling mode static pressure	0.483	" w.c.	Measured using:	DG-700
Register Airflows				
Register Annows				
Measured using:	Flow Blaste	er		
	Flow Blasto Manual-J	er Target	Final	Final air balance for even room temperatures
		-	Final 5/19/2015	Final air balance for even room temperatures 7/10/2015 Deviation
		-		
Measured using:	Manual-J	Target	5/19/2015	7/10/2015 Deviation

145

112

173

182

832

Comments:

Bedroom 2

Bedroom 1

Dining Room

Great Room

1. The system had to be re-balanced on 7/10/2015 to provide evan cooling room-to-room.

150

115

129

135

824

118%

122%

81%

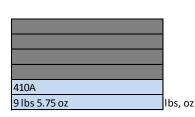
84%

HP Operation Verification			ninutes of cooling operation er readings within 60 seconds of e	ach other
Outdoor temperature	95	Measured using:	Fluke 52-2	
Supply air temperature	57.5	Measured using:	Fluke 52-2]
Return air temperature	73.7	Measured using:	Fluke 52-2	
Outdoor unit power	1,580	Measured using:	Extech 380940	
Indoor unit power	240	Measured using:	Extech 380940	
Subcooling	7.3	Measured using:	JB Digital Gauge Set	
Superheat	6	Measured using:	JB Digital Gauge Set	
Comments:	1. Testing	done on a 69F day. C	Condenser air flow restricted to si	mulate a 95F day.

"By signing, I certify the above readings and attest that the installed unit has been properly installed

and is operating as intended:"Commissioning Agent 1Mike MacFarlandCommissioning Agent 2Rick Chitwood

Measurement Equipment Accuracy:	
Electronic Charging Scales, Accu-charge II	0.5% of reading +/- least significant digit
Air Flow Measurement, Energy Conservatory TrueFlow	+/- 7% when used with the DG-700 manometer
Watt Meter, Extech 380940	+/- 1.5% + 3 dgts (10 W resolution)
Manometer, Energy Conservatory DG-700	+/- 1% of reading or 2 times the resolution, whichever is greater
Capture Hood, Energy Conservatory FlowBlaster	+/- 5% of indicated flow or +/- 2 CFM
Digital Thermometer, Fluke 52-2	+/- 0.05% +0.3C
Digital Refrigeration Gauge Set, JB DM2-3	+/- 0.5% pressure, +/- 0.9F temperature


CALEB REFERENCE SYSTEM COMMISSIONING REPORT

Base Case Air Source Heat Pump Installation - at Caleb

Site:	
Commissioning Date	
Installers	

Caleb
5/19/2015
Mike MacFarland
Brian Tyrrell

Installed Equipment
Outdoor Unit Make
Outdoor Unit Model#
Indoor Unit Make
Indoor Unit Model#
Refrigerant type
Quantity of refr in system

Comments:

- 1. The condensing unit came from the factory and had been used in testing.
- 2. The condensing unit was received with the service valves open (which alowed air and moisture into th
- 3. A new filter/dryer was installed at the indoor unit.

Final Airflow Measurements

I man and the measurements		_		
Total airflow	1,057	cfm	Measured using:	True Flow
Indoor fan Watt draw	410	Watts	Measured using:	Extech 380940
Watt/cfm	0.39	W/cfm		
Cooling mode static pressure	0.48	" w.c.	Measured using:	DG-700

Register Airflows

Measured using:		Flow Blaste	er			
	_	Manual-J	Target	Final	Final air b	alance for even room temperatures
				5/19/2015	7/1/2015	Deviation
Bedroom 1		95	105	162	191	182%
Bedroom 2		86	97	157	184	190%
Bedroom 3		108	116	105	119	103%
Master Bedroom		135	204	498	388	190%
Master Bath		70	0	0	0	
Bonus		88	0	0	0	
Great Room		372	334	95	86	26%
Kitchen		172	214	70	61	29%
Powder Room		22	0	0	0	
Laundry		44	0	0	0	
	Total	1,192	1,070	1,087	1,029	

Comments:

1. The Manual-J calculation assumed 10 supply grilles but there are only 6 installed.

2. The system had to be re-balanced on $7\!/1\!/2015$ to provide evan cooling room-to-room.

HP Operation Verification

Measurements taken after 10 minutes of cooling operation

Take all temperature and power readings within 60 seconds of each otherOutdoor temperature76Measured using:Fluke 52-2

Supply air temperature Return air temperature Outdoor unit power Indoor unit power Subcooling Superheat

	_
62.6	Measured using:
79	Measured using:
2,070	Measured using:
410	Measured using:
6.5	Measured using:
3.6	Measured using:

Fluke 52-2	
Fluke 52-2	
Extech 380940	
Extech 380940	
JB Digital Gauge Set	
JB Digital Gauge Set	

Comments:

"By signing, I certify the above readings and attest that the installed unit has been properly installed

and is operating as intended	l:"
Commissioning Agent 1	Mike MacFa

Commissioning Agent 1	Mike MacFarland
Commissioning Agent 2	Rick Chitwood

Measurement Equipment Accuracy:	
Electronic Charging Scales, Accu-charge II	0.5% of reading +/- least significant digit
Air Flow Measurement, Energy Conservatory TrueFlow	+/- 7% when used with the DG-700 manometer
Watt Meter, Extech 380940	+/- 1.5% + 3 dgts (10 W resolution)
Manometer, Energy Conservatory DG-700	+/- 1% of reading or 2 times the resolution, whichever is greater
Capture Hood, Energy Conservatory FlowBlaster	+/- 5% of indicated flow or +/- 2 CFM
Digital Thermometer, Fluke 52-2	+/- 0.05% +0.3C
Digital Refrigeration Gauge Set, JB DM2-3	+/- 0.5% pressure, +/- 0.9F temperature

APPENDIX C – VCHSP SYSTEM INSPECTION REPORTS

GRANGE VCHP SYSTEM INSPECTION REPORT

AHRI Mini-split Committee Proposed Installation Inspection Checklist

INSTALLATION DATA								
Site Address: Crange Avenue								
	Stockton							
State: CA	Zip/Postal Code:	95204 Country:	USA					
Installing Contra	ctor: Energy Docs	Telephone:	530-945-7401					
System Reference	e:	AHRI Certified Reference No.:						
		Rated Capacity (Cooling/Heating):	11,000 / 12,000					
Location: Back Patio		Rated SEER/HSPF:	SEER 25.5 / HSPF 12.0					
Equipment Purcl	ased from:							

COMMENTS AND POINTS FOR ATTENTION

This site has an air transfer fan to move air from the living room, where the mini-split head is located, to the two bedrooms. A Panasonic bathroom exhaust fan, FV-11-15VK1, was installed and programmed to deliver 75 CFM to each of the two bedrooms, using only 9 Watts total (the low Watt draw is due to exceptional installation quality; oversized, well supported, and straight - ducting). The fan is operated 24 hours a day when the mini-split is cooling or heating the home.

HERS Inspector's Name:

Allen Amaro, CC2005672

HERS Inspector's Signature:

Date:

10/27/2015

ET14PGE8761

SYSTE	м		
NO.		SYSTEM AND INS	STALLATION STATUS REMARKS
1	Installation Location	Outdoor Unit	XX Other Location (<u>Back Patio</u>)
2	Installation Parameters within Manufacturer's Clearances	Outdoor Unit Indoor Units	XX Acceptable Not Acceptable XX Acceptable Not Acceptable
3	Total System Piping ¹		Outdoor to Indoors: <u>17</u> Ft.
4	Furthest Piping Length (Multi-splits only)		Outdoor to Indoor: N/A Ft.
5	Height Difference (Multi-	splits only)	Outdoor to Indoor: <u>+6</u> Ft. Indoor to Indoor: <u>N/A</u> Ft.
6	Standard of Pipe-work ²		XX Acceptable 🛄 Not Acceptable
7	Standard of Pipe Insulation	n ²	XX Acceptable 🛄 Not Acceptable
8	Liquid Line Insulated (if re	quired)	XX Yes No
9	Control Method		XX Wired Wireless
10	Remote Controller Opera	tion	XX Acceptable Not Acceptable

OUTD	OUTDOOR UNIT				Back Pati	o		
NO.		REMARKS						
11	Outdoor U	Init Details	Model No: 🗖		Serial No: 🧲			
12	Power Source (Voltage)		L1 - N	L2 - N	L3 - N	Gnd – N		
			<u>121</u> V	<u>122</u> V	<u>N/A</u> V	ΩV		
13	Vibration	/ Noise ²	Compressor	XX Acce	ptable 📃 Not	Acceptable		
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Fan	XX Acce	ptable 📃 Not	Acceptable		
14	Additional	Refrigerant C	harge (if applicab	le)	None Oz.			
15	Outdoor U	Jnit Refrigeran	t Charge from Fa	tory	40.6 Oz.			
16	Maximum	Line Length (v	vithout adding re	frigerant	feet			
	charge)							
Refrige	erant Charg	e Calculation:						
No line	eset length a	adjustment red	quired					
Factor	y Charge	2 Lbs. 8.6 Oz.						
Recove	ered	2 Lbs. 7.5 Oz.						
Installe	ed	2 Lbs. 8.5 Oz. ((scale reads in hal	f ounce incre	ments)			

REMARKS:

Outdoor Temperature

_71___°F

DUCTLESS INDOOR UNIT # : 1			Distar	Distance/Elevation from Outdoor Unit: <u>17'/ +6'</u>				
Location	Living Roo	Living Room					REMARKS	
Model No.			Serial	No.:				
Voltage	Line Volta	ge	24	2		V		
Inlet Temperature	Cooling:	73	DB°F	Heating:	79	_DB°F		
Outlet Temperature	Cooling:	48	DB°F	Heating:	99	_DB°F		

MAYFAIR VCHP SYSTEM INSPECTION REPORT

AHRI Mini-split Committee Proposed Installation Inspection Checklist

ite Address:	/est Mayfair		
Stoc	kton		
State: CA	Zip/Postal Code: 95207	Country:	USA
nstalling Contractor:	Queirolo's Heating & Air Conditioning	Telephone:	209-464-9658
system Reference:	AHRI Certified	Reference No.:	
	Rated Capacity	(Cooling/Heating):	11,500 / 13,600
ocation:	Back Yard Rated SEER/HS	PF:	SEER 16.00 / HSPF 10.0
Equipment Purchased f	from: Provided by		
	TS FOR ATTENTION		
COMMENTS AND POIN	TS FOR ATTENTION	ealed, and exhaust v	entilated, crawlspace.

HERS Inspector's Name:	Allen Amaro, CC2005672
HERS Inspector's Signature:	
Date:	11/3/2015

ET14PGE8761

SYSTE	SYSTEM							
NO.		SYSTEM AND INS	STALLATION STATUS	REMARKS				
1	Installation Location	Outdoor Unit	XX Other Location (<u>Back Wall</u>)					
2	Installation Parameters within Manufacturer's Clearances	Outdoor Unit Indoor Units	XX Acceptable Not Acceptable XX Acceptable Not Acceptable					
3	Total System Piping ¹		Outdoor to Indoors: 22.2 Ft.					
4	Furthest Piping Length (Multi-splits only)		Outdoor to Indoor: N/A Ft.					
5	Height Difference (Multi-	splits only)	Outdoor to Indoor: <u>-2.0</u> Ft. Indoor to Indoor: <u>N/A</u> Ft.					
6	Standard of Pipe-work ²		XX Acceptable 📃 Not Acceptable					
7	Standard of Pipe Insulation	on ²	XX Acceptable 🔲 Not Acceptable					
8	Liquid Line Insulated (if re	quired)	XX Yes No					
9	Control Method		Wired XX Wireless					
10	Remote Controller Opera	tion	XX Acceptable 🛄 Not Acceptable					

OUTD	UTDOOR UNIT				Wall mou	int on back wall of hous	se
NO.		REMARKS					
11	Outdoor Unit Details Model No: Serial No:						
12	Power Source (Voltage)		L1 - N	L2 - N	L3 - N	Gnd – N	
			<u>120</u> V	<u>120</u> V	<u>N/A</u> V	<u>o</u> v	
13	Vibration /	Noise ²	Compressor	XX Acce	otable 🔲 Not	Acceptable	
15	Vibration / Noise ² Fan			XX Acce	ptable 🔲 Not		
14	Additional	Refrigerant C	harge (if applicab	le)	<u>None</u> Oz.		
15	Outdoor U	nit Refrigeran	t Charge from Fac	tory	<u>41.0</u> Oz.		
16	Maximum	Line Length (v	vithout adding re	frigerant	<u>25</u> feet		
	charge)						
Refrig	erant Charge	e Calculation:					
No line	eset length a	djustment red	quired				
Factor	y Charge 2	2 Lbs. 9.0 Oz.					
Recove	ered 2	2 Lbs. 2.5 Oz. (no purge function	n on the recov	/ery pump)		
Installe	ed 2	2 Lbs. 9.0 Oz.					

REMARKS:

Outdoor Temperature

_64__°F

Pacific Gas and Electric Company®

DUCTED INDOOR UNIT	³ # : <u>1</u>		Airflow (cfm) : 421 Distance/Elevation from			n Outdoo	or Unit: <u>22.2 / -2</u>		
Location	Crawlspace	Crawlspace						REMARKS	
Model No.			Serial No.:						
Voltage	Line Voltag	ge -	<u>24</u>	1			v		
Inlet Temperature ⁴	Cooling:	<u>74</u>	DB°F	Heat	ing:	<u>69</u>	DB°F		
Outlet Temperature ⁴	Cooling:	<u>50</u>	DB°F	Heat	ing:	<u>95</u>	DB°F		

CALEB FIRST FLOOR VCHP SYSTEM INSPECTION REPORT

INSTALLATION D	INSTALLATION DATA											
Site Address:	aleb Circle											
	Stockton											
State: CA	Zip/Postal Code:	95210 Country:	USA									
Installing Contra	ctor: Energy Docs	Telephon	e: 530-945-7401									
System Reference	e:	AHRI Certified Reference No.:										
		Rated Capacity (Cooling/Heati										
Location:	Side Yard	Rated SEER/HSPF:	SEER 23.0 / HSPF 12.5									
Equipment Purch	nased from:											

AHRI Mini-split Committee Proposed Installation Inspection Checklist

COMMENTS AND POINTS FOR ATT	ENTION	
COMMENTS AND FOINTS FOR ATT	ENTION	
HERS Inspector's Name:	Allen Amaro, CC2005672	
HERS Inspector's Signature		

HERS	Inspector's	Signature
------	-------------	-----------

Date:

11/12/2015

ET14PGE8761

PG&E's Emerging Technologies Program

SYSTE	M			
NO.		SYSTEM AND INS	TALLATION STATUS	REMARKS
1	Installation Location	Outdoor Unit	XX Other Location (<u>Side Yard</u>)	
2	Installation Parameters within Manufacturer's Clearances	Outdoor Unit Indoor Units	XX Acceptable Not Acceptable XX Acceptable Not Acceptable	
3	Total System Piping ¹		Outdoor to Indoors: <u>30</u> Ft.	
4	Furthest Piping Length (Multi-splits only)		Outdoor to Indoor: N/A Ft.	
5	Height Difference (Multi-s	plits only)	Outdoor to Indoor: <u>+6</u> Ft. Indoor to Indoor: <u>N/A</u> Ft.	
6	Standard of Pipe-work ²		XX Acceptable 🔲 Not Acceptable	
7	Standard of Pipe Insulatio	n ²	XX Acceptable 🔲 Not Acceptable	
8	Liquid Line Insulated (if re	quired)	XX Yes No	
9	Control Method		XX Wired Wireless	
10	Remote Controller Operat	tion	XX Acceptable 🔲 Not Acceptable	

OUTD	OOR UNIT			Location	Side Yard		
NO.		REMARKS					
11	Outdoor (Jnit Details	Model No:		Serial No:	441 P	
12	Power So	urce (Voltage)	L1 - N	L2 - N	L3 - N	Gnd – N	
			<u>123</u> V	<u>123</u> V	<u>N/A</u> V	<u>o</u> v	
13	Vibration	/ Noise ²	Compressor	XX Acce	otable 📃 Not	Acceptable	
15	VIDIALION	/ NOISE	Fan	XX Accer	ptable 🔲 Not	Acceptable	
14	Additiona	l Refrigerant C	harge (if applicabl	e)	<u>None</u> Oz.		
15	Outdoor I	Jnit Refrigerar	t Charge from Fac	tory	42.4 Oz.		
16	Maximum	Line Length (without adding ref	frigerant	<u>98.4</u> feet		
	charge)						
Refrige	erant Charg	e Calculation:					
No line	eset length	adjustment re	quired				
Factor	y Charge	2.65 Lbs.					
Recove	ered	2.50 Lbs.					
Installe	ed	2.65 Lbs.					

Outdoor

Temperature

<u>63</u>°F

DUCTLESS INDOOR UNIT # : 1				Distance/Elevation from Outdoor Unit:				<u>30'/ +6'</u>
Location	Dining Roo	m	REMARKS					
Model No.		Serial No.:						
Voltage	Line Volta	ge <u>247</u> V						
Inlet Temperature	Cooling:	64.9	i4.9 DB°F Heating: <u>73.0</u> DB°F					
Outlet Temperature	Cooling:	<u>48.5</u>	DB°F	Heat	ing:	103.4	DB°F	

CALEB SECOND FLOOR VCHP SYSTEM INSPECTION REPORT

AHRI Mini-split Committee Proposed Installation Inspection Checklist

Site Address:	Caleb Circle		
	Stockton		
State: CA	Zip/Postal Code:	95210 Country	/: USA
Installing Contractor: Energy Docs		Telepho	one: 530-945-7401
System Reference	e: • ••• •	AHRI Certified Reference No.	
		Rated Capacity (Cooling/Hea	ting): 18,000 / 22,000
Location:	Side Yard	Rated SEER/HSPF:	SEER 19.5 / HSPF 9.2

COMMENTS AND POINTS FOR ATTENTION

This site has two air transfer fans to move air from the second floor bonus room/landing area, where one of the multi-split heads is located, to the three second floor bedrooms. A Panasonic bathroom exhaust fan, FV-11-15VK1, was installed and programmed to deliver 75 CFM to two of the bedrooms (bedroom 2 and bedroom 3). A second Panasonic bathroom exhaust fan, FV-05-11VK1, was installed and programmed to deliver 75 CFM to the southwest bedroom (bedroom 1). The total watt draw for the two air transfer fans is 10 Watts (the low Watt draw is due to exceptional installation quality; oversized, well supported, and straight - ducting). The fan is operated 24 hours a day when the m-splits are cooling or heating the home.

HERS Inspector's Name:

Allen Amaro, CC2005672

HERS Inspector's Signature:

Date:

11/12/2015

SYSTE	м							
NO.		SYSTEM AND INS	STALLATION STATUS	REMARKS				
1	Installation Location	Outdoor Unit	XX Other Location (<u>Side Yard</u>)					
2	Installation Parameters within Manufacturer's Clearances	Outdoor Unit Indoor Units	XX Acceptable Not Acceptable XX Acceptable Not Acceptable					
3	Total System Piping ¹		Outdoor to Indoors: <u>113.5</u> Ft.					
4	Furthest Piping Length (Multi-splits only)		Outdoor to Indoor: <u>68.0</u> Ft.					
5	Height Difference (Multi-	splits only)	Outdoor to Indoor: <u>+17.5</u> Ft. Indoor to Indoor: <u>1.0</u> Ft.					
6	Standard of Pipe-work ²		XX Acceptable Not Acceptable					
7	Standard of Pipe Insulation	n ²	XX Acceptable 🛄 Not Acceptable					
8	Liquid Line Insulated (if required)		XX Yes No					
9	Control Method		XX Wired Wireless					
10	Remote Controller Opera	tion	XX Acceptable Not Acceptable					

OUTDO	DOR UNIT			Location	Side Yard			
NO.			OUTDOOR UN	IT OPERATIO	N STATUS		REMARKS	
11	Outdoor Unit Deta	ails I	Vlodel No: 💶		Serial No:			
12	Power Source (Vo	tage)	L1 - N	L2 - N	L3 - N	Gnd – N		
			<u>123</u> V	<u>123</u> V	<u>N/A</u> V	ΩV		
13	Vibration / Noise ²		Compressor an	XX Acce XX Acce		Acceptable Acceptable		
14	Additional Refrige	rant Cha	arge (if applicab		<u>3.3</u> Oz.	·		
15	Outdoor Unit Refr	igerant	Charge from Fa	ctory	<u>91.7</u> Oz.			
16	Maximum Line Ler	ngth (wi	thout adding re	frigerant	<u>98.4</u> feet			
	charge)							
Refrige	erant Charge Calcul	ation:						
68 feet	t + 45.5 feet = 113.5	feet (to	otal line set leng	th) 113.9	5 feet – 98.4 fe	et = 15.1 feet (extra le	ength)	
15.1 fe	15.1 feet x 0.22 Oz./Ft = 3.3 Oz. (additional refrigerant charge, 3.3 Oz. = 0.21 Lbs.)							
Factor	y Charge 5.73 Lbs	. + 0.21	Lbs. = 5.94					
Recove	ered 5.41 Lbs							
Installe	ed 5.94 Lbs							

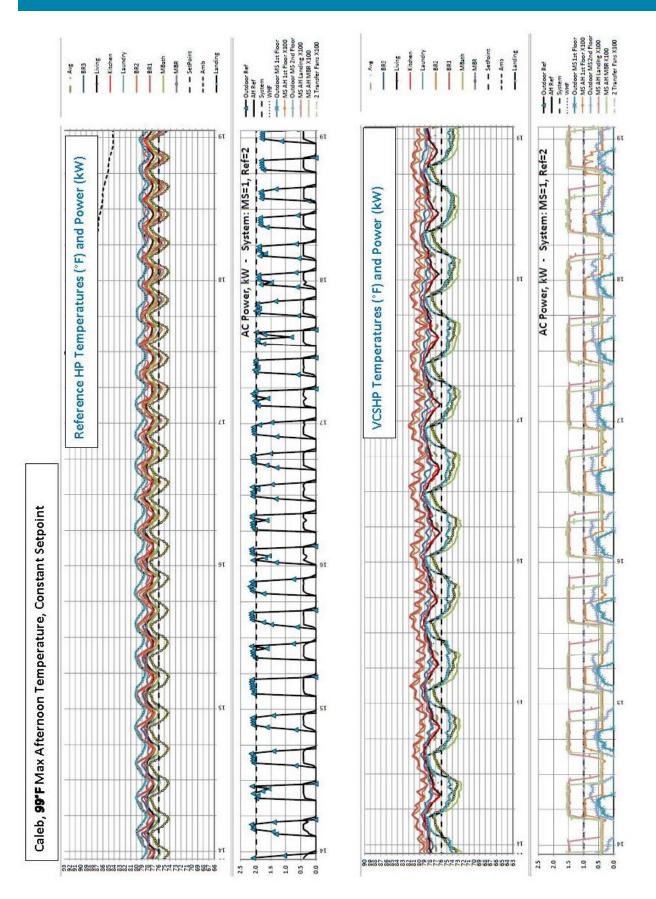
Outdoor Temperature

<u>63</u>°F

DUCTLESS INDOOR UNIT # : 1 Distance/Elevation from Outdoor U					r Unit: .	45.5'/ +16.5'		
Location	Second Flo	Second Floor Bonus Room/Landing						REMARKS
Model No.		Serial No.: Decou						
Voltage	Line Voltag	ge <u>247</u> V						
Inlet Temperature	Cooling:	<u>65.9</u>	DB°F	Heat	ing:	77.2	DB°F	
Outlet Temperature	Cooling:	48.9	DB°F	DB°F Heating: <u>110.9</u> DB°F				

DUCTLESS INDOOR UNIT # : 2				Distance/Elevation from Outdoor Unit: 68.0' / +17.5'				
Location	Second Flo	or Master Be	droom			REMARKS		
Model No.								
Voltage	Line Voltag	ge <u>247</u>	v					
Inlet Temperature	Cooling:	66.3	DB°F	Heating:				
Outlet Temperature	Cooling:	48.1	DB°F	Heating:	<u>107.1</u> DB°F			

APPENDIX D – TIME-SERIES CHARTS


- Caleb 99°F Max Afternoon Temperature, Constant Thermostat Setpoint
- Caleb 97°F Max Afternoon Temperature, Thermostat Setback and 5pm Recovery
- Grange 99°F Max Afternoon Temperature, Constant Thermostat Setpoint
- Grange 97°F Max Afternoon Temperature, Thermostat Setback and 5pm Recovery
- Mayfair 99°F Max Afternoon Temperature, Constant Thermostat Setpoint
- Mayfair 97°F Max Afternoon Temperature, Thermostat Setback and 5pm Recovery

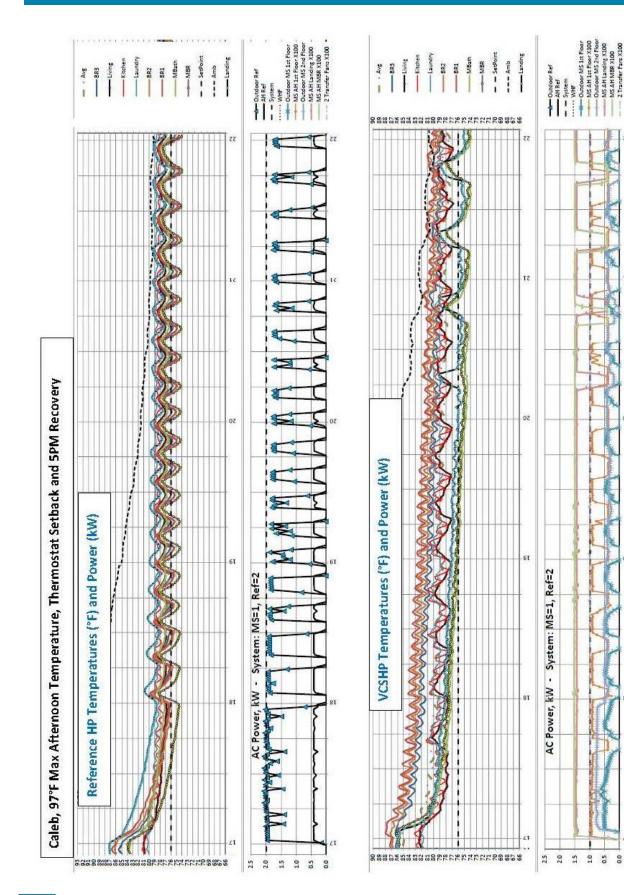
Each of the following charts includes a snapshot of measured data for one afternoon. Each chart includes four parts

- 1. Reference system indoor temperatures in each room
- 2. Reference system power for outdoor and indoor units
- 3. VCHP system indoor temperatures for each room
- 4. VCHP system power for outdoor and indoor units

ET14PGE8761

ET14PGE8761

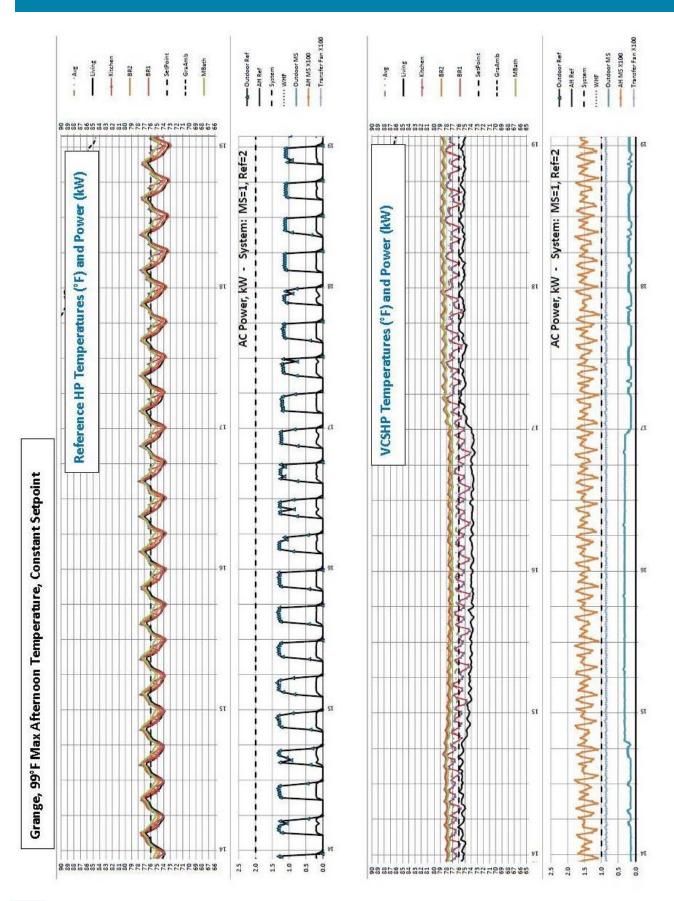
ZZ

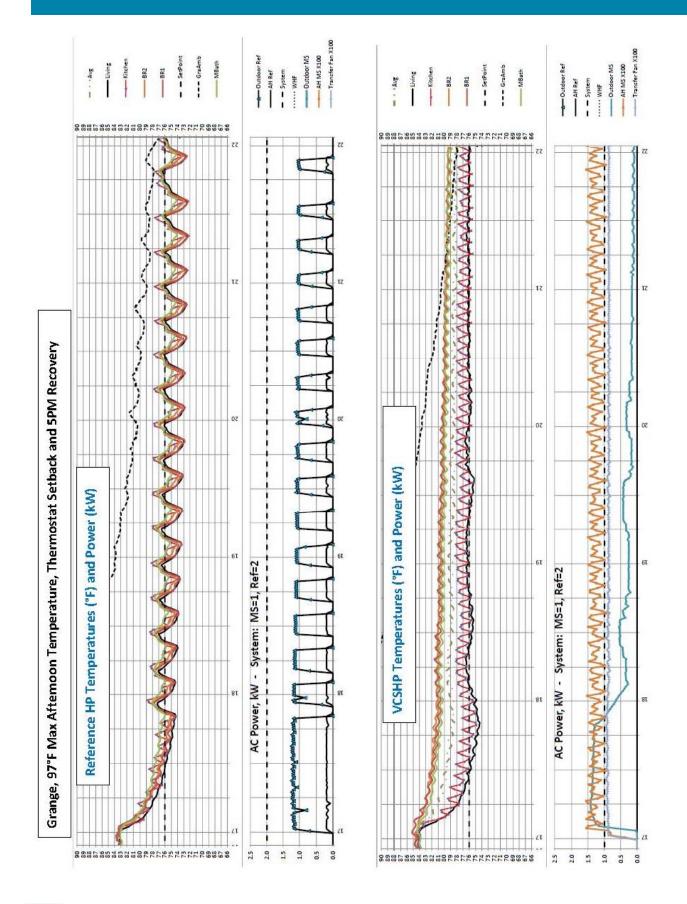

17

50

61

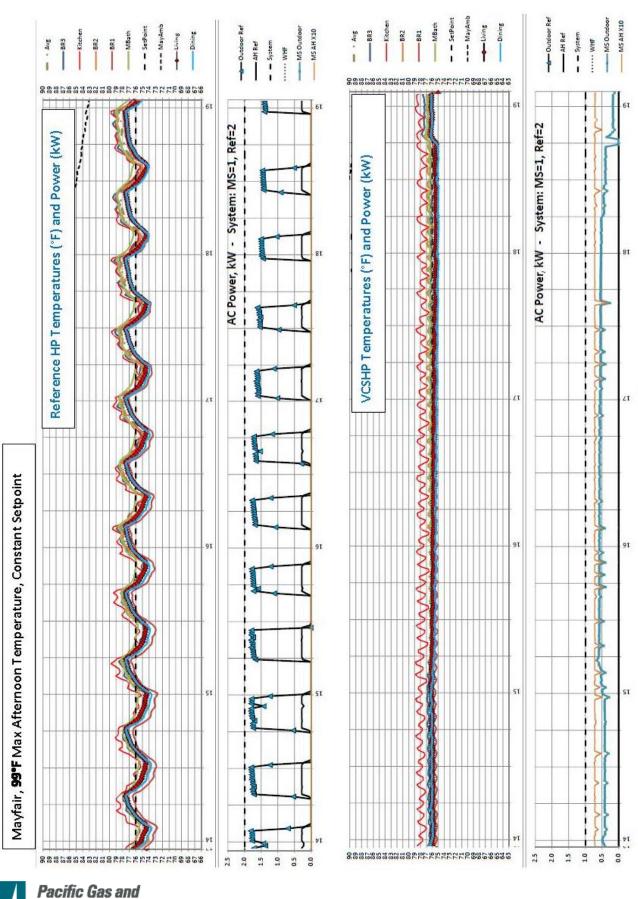
81


PG&E's Emerging Technologies Program


Pacific Gas and Electric Company®

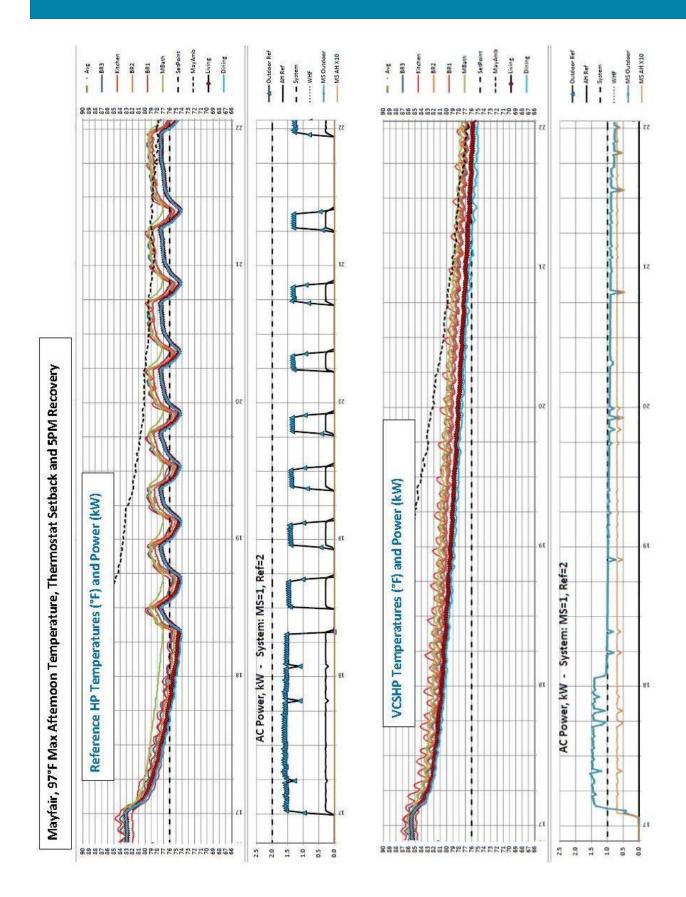
ET14PGE8761

ET14PGE8761



Pacific Gas and Electric Company®

ET14PGE8761


PG&E's Emerging Technologies Program

Electric Company[®]

ET14PGE8761

Pacific Gas and Electric Company®

APPENDIX E –INPUT POWER VS. OUTDOOR TEMPERATURE

The following plots show input power vs. outdoor temperature for the heat pump systems in heating and cooling modes. The plotted values are one minute data points during times when the compressor was operating. For the VCHP systems, this includes times when the system is running at low speeds during ramping at the beginning or end of cycles. Total heat pump system input power is plotted. Transfer fan power is not included.

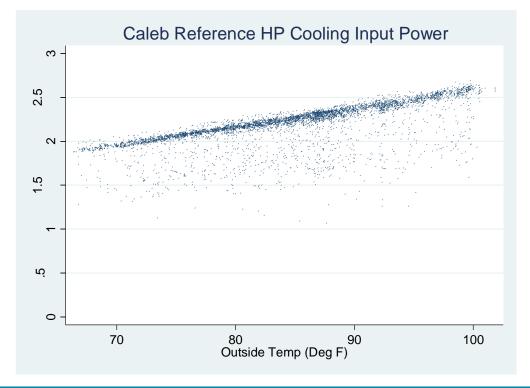


FIGURE 43. CALEB REFERENCE HEAT PUMP IN COOLING MODE

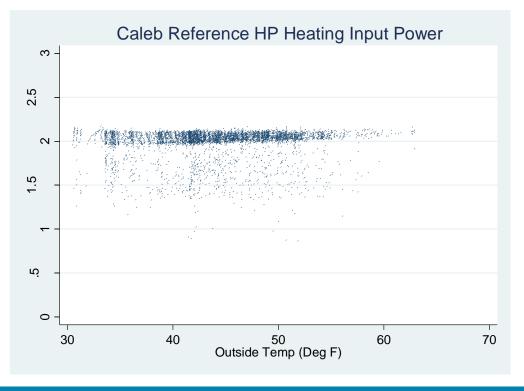
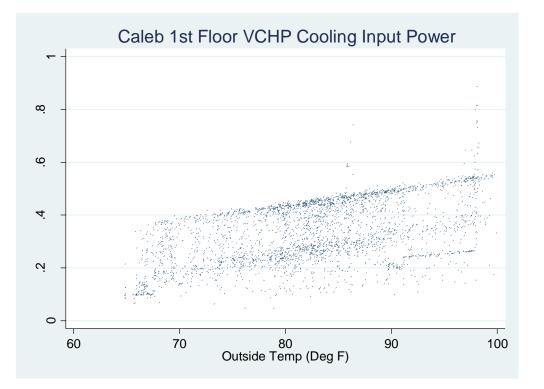



FIGURE 44. CALEB REFERENCE HEAT PUMP IN HEATING MODE

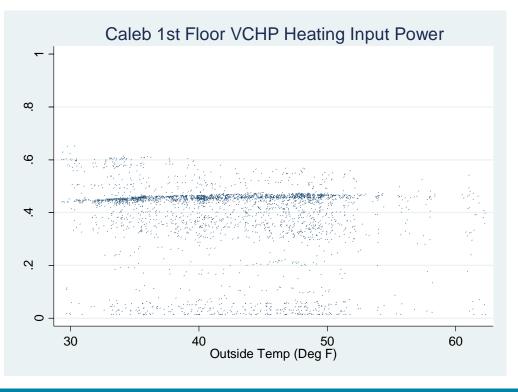
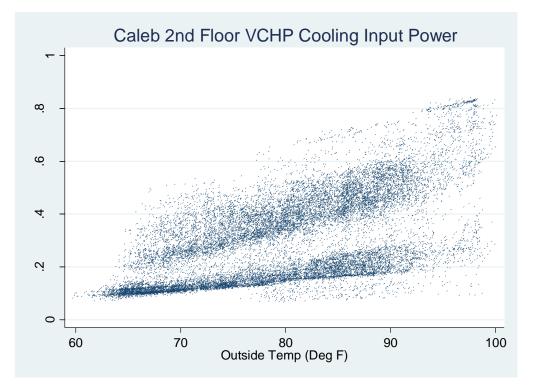



FIGURE 46. CALEB 1ST FLOOR VCHP IN HEATING MODE

ET14PGE8761

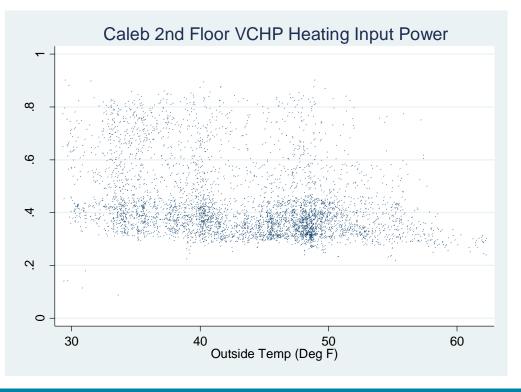


FIGURE 48. CALEB 2ND FLOOR VCHP IN HEATING MODE

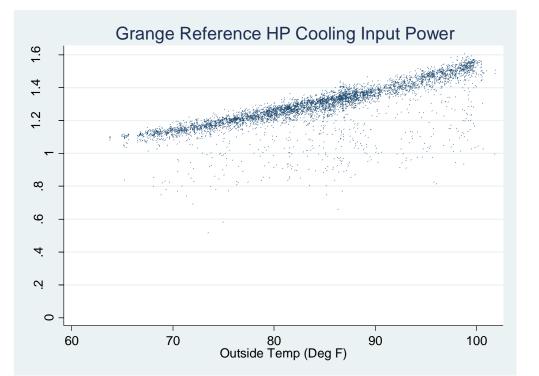


FIGURE 49. GRANGE REFERENCE HEAT PUMP IN COOLING MODE

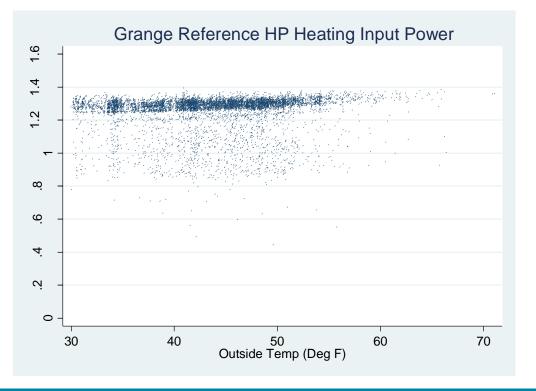
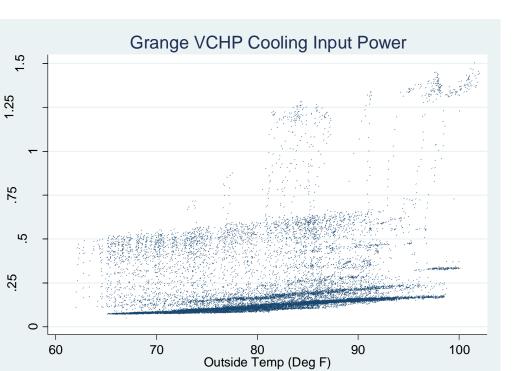



FIGURE 50. GRANGE REFERENCE HEAT PUMP IN HEATING MODE

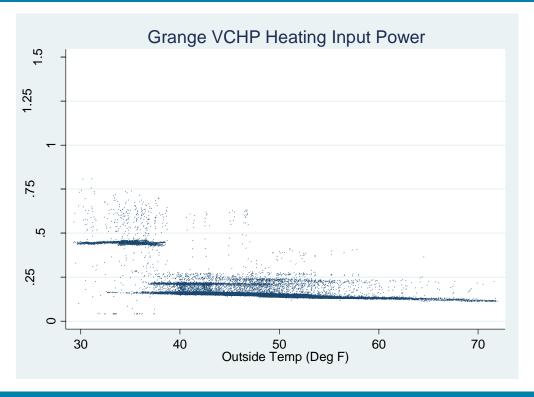
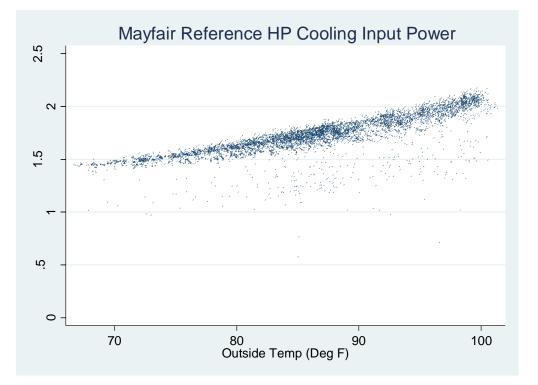



FIGURE 52. GRANGE VCHP IN HEATING MODE

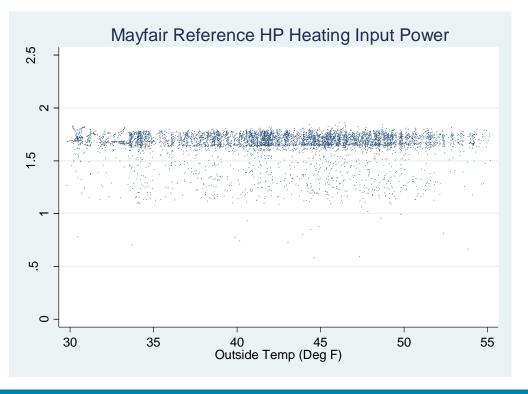



FIGURE 54. MAYFAIR REFERENCE HEAT PUMP IN HEATING MODE

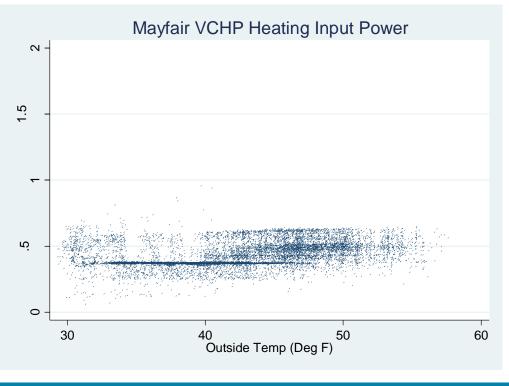


FIGURE 56. MAYFAIR VCHP IN HEATING MODE

